116 research outputs found

    Masked Modeling Duo for Speech: Specializing General-Purpose Audio Representation to Speech using Denoising Distillation

    Full text link
    Self-supervised learning general-purpose audio representations have demonstrated high performance in a variety of tasks. Although they can be optimized for application by fine-tuning, even higher performance can be expected if they can be specialized to pre-train for an application. This paper explores the challenges and solutions in specializing general-purpose audio representations for a specific application using speech, a highly demanding field, as an example. We enhance Masked Modeling Duo (M2D), a general-purpose model, to close the performance gap with state-of-the-art (SOTA) speech models. To do so, we propose a new task, denoising distillation, to learn from fine-grained clustered features, and M2D for Speech (M2D-S), which jointly learns the denoising distillation task and M2D masked prediction task. Experimental results show that M2D-S performs comparably to or outperforms SOTA speech models on the SUPERB benchmark, demonstrating that M2D can specialize in a demanding field. Our code is available at: https://github.com/nttcslab/m2d/tree/master/speechComment: Interspeech 2023; 5 pages, 2 figures, 6 tables, Code: https://github.com/nttcslab/m2d/tree/master/speec

    Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells

    Get PDF
    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK

    Effects of time-compressed speech training on multiple functional and structural neural mechanisms involving the left superior temporal gyrus

    Get PDF
    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension

    Paracrine activation of MET promotes peritoneal carcinomatosis in scirrhous gastric cancer

    Get PDF
    ćŒć‚“é€²å±•åˆ¶å¾”ē ”ē©¶ę‰€Scirrhous gastric cancer is associated with abundant stroma and frequently develops into peritoneal carcinomatosis with malignant ascites. Although malignant ascites is among the most deadly diseases worldwide, its molecular pathogenesis is poorly understood. We investigated the role of hepatocyte growth factor (HGF) in the production of peritoneal carcinomatosis with malignant ascites. We examined three scirrhous and three non-scirrhous human gastric cancer cell lines for the production of peritoneal carcinomatosis in vivo and responses to HGF in vitro. Furthermore, clinical scirrhous gastric cancer specimens were examined for HGF production. Among the six cell lines examined, only two scirrhous cell lines (NUGC4 and GCIY) produced peritoneal carcinomatosis with massive ascites after intraperitoneal injection in nude mice. Their proliferation was stimulated by exogenous HGF in vitro. On the other hand, a non-scirrhous cell line, MKN45, with MET amplification generated peritoneal tumors but not ascites. MET tyrosine kinase inhibitors, crizotinib and TAS-115, inhibited HGF-stimulated proliferation of NUGC4 and GCIY as well as constitutive proliferation of MKN45. Furthermore, crizotinib and TAS-115 prolonged the survival of mice bearing established tumors by NUGC4 or MKN45. In clinical specimens, HGF was markedly produced by stromal fibroblasts. Malignant ascitic fluids from patients with peritoneal carcinomatosis contained high levels of HGF. Our results strongly suggest that paracrine HGF-induced activation of MET-mediated signaling pathways plays an important role in the pathogenesis of peritoneal carcinomatosis in scirrhous gastric cancer. Thus, MET signaling pathway may be a potential therapeutic target for peritoneal carcinomatosis of gastric cancer, even without MET amplification. Ā© 2013 Japanese Cancer Association

    The relationship between processing speed and regional white matter volume in healthy young people

    Get PDF
    Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, wordā€“colour and colourā€“word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task

    Estrogen Prevents Bone Loss via Estrogen Receptor Ī± and Induction of Fas Ligand in Osteoclasts

    Get PDF
    SummaryEstrogen prevents osteoporotic bone loss by attenuating bone resorption; however, the molecular basis for this is unknown. Here, we report a critical role for the osteoclastic estrogen receptor Ī± (ERĪ±) in mediating estrogen-dependent bone maintenance in female mice. We selectively ablated ERĪ± in differentiated osteoclasts (ERĪ±Ī”Oc/Ī”Oc) and found that ERĪ±Ī”Oc/Ī”Oc females, but not males, exhibited trabecular bone loss, similar to the osteoporotic bone phenotype in postmenopausal women. Further, we show that estrogen induced apoptosis and upregulation of Fas ligand (FasL) expression in osteoclasts of the trabecular bones of WT but not ERĪ±Ī”Oc/Ī”Oc mice. The expression of ERĪ± was also required for the induction of apoptosis by tamoxifen and estrogen in cultured osteoclasts. Our results support a model in which estrogen regulates the life span of mature osteoclasts via the induction of the Fas/FasL system, thereby providing an explanation for the osteoprotective function of estrogen as well as SERMs
    • ā€¦
    corecore