483 research outputs found

    Combined use of repeated active shots and ambient noise to detect temporal changes in seismic velocity: application to Sakurajima volcano, Japan

    Get PDF
    Additional file 1. Comparison of the results of coda-wave interferometry and seismic interferometry on the almost identical wave paths. Gray dots in top two panels are daily dv/v values obtained from seismic interferometry. The dv/v values obtained from coda-wave interferometry are shown by red squares and are overwritten assuming that the results for the 2012 experiment are the same as those on the same day from seismic interferometry. Error bars show Âą one standard deviation. Spatial distribution of three seismometers (squares) and a shot point (star) used in top two panels is shown in the bottom panel with black letters and red letters, respectively

    Development of visual 3D virtual environment for control software

    Get PDF
    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering

    Diarylethene Self-Assembled Monolayers: Cocrystallization and Mixing-Induced Cooperativity Highlighted by Scanning Tunneling Microscopy at the Liquid/Solid Interface

    Get PDF
    International audienceThe control over 2-D multi-component molecular orderings on surfaces is a key technology to realize advanced materials with stimuli-responsive properties. The fractional coverage (θ) at a given concentration can be determined from two parameters: the equilibrium constant (Ke) and the degree of cooperativity (σ). The parameters for the formation of self-assembled monolayer of pure diarylethene isomers were obtained by STM measurements on HOPG. These mono-component parameters were used as references to highlight a cocrystallization process between the open-and closed-ring isomers. Moreover it was observed that the presence of the closed-ring isomer induces cooperativity in the formation of the molecular ordering of the open-ring isomer. The quantitative analysis of the ordering formation process by using a model simulation presented in this work provides a better understanding of mixing of components in a molecular ordering and photoinduced interchanges at the liquid/solid interface

    Diarylethene Self-Assembled Monolayers: Cocrystallization and Mixing-Induced Cooperativity Highlighted by Scanning Tunneling Microscopy at the Liquid/Solid Interface

    Get PDF
    International audienceThe control over 2-D multi-component molecular orderings on surfaces is a key technology to realize advanced materials with stimuli-responsive properties. The fractional coverage (θ) at a given concentration can be determined from two parameters: the equilibrium constant (Ke) and the degree of cooperativity (σ). The parameters for the formation of self-assembled monolayer of pure diarylethene isomers were obtained by STM measurements on HOPG. These mono-component parameters were used as references to highlight a cocrystallization process between the open-and closed-ring isomers. Moreover it was observed that the presence of the closed-ring isomer induces cooperativity in the formation of the molecular ordering of the open-ring isomer. The quantitative analysis of the ordering formation process by using a model simulation presented in this work provides a better understanding of mixing of components in a molecular ordering and photoinduced interchanges at the liquid/solid interface. (1) Sakano, T.; Imaizumi, Y.; Hirose, T.; Matsuda, K. Chem. Lett. 2013, 42, 1537. (2) Yokoyama, S.; Hirose, T.; Matsuda, K. Chem. Commun. 2014, 50, 5964. (3) Frath, D.; Sakano, T.; Imaizumi, Y.; Yokoyama, S.; Hirose, T.; Matsuda, K. Chem. Eur. J. 2015, 21, 11350

    Increased vesicle fusion competence underlies long-term potentiation at hippocampal mossy fiber synapses

    Get PDF
    Presynaptic long-term potentiation (LTP) is thought to play an important role in learning and memory. However, the underlying mechanism remains elusive because of the difficulty of direct recording during LTP. Hippocampal mossy fiber synapses exhibit pronounced LTP of transmitter release after tetanic stimulation and have been used as a model of presynaptic LTP. Here, we induced LTP by optogenetic tools and applied direct presynaptic patch-clamp recordings. The action potential waveform and evoked presynaptic Ca2+ currents remained unchanged after LTP induction. Membrane capacitance measurements suggested higher release probability of synaptic vesicles without changing the number of release-ready vesicles after LTP induction. Synaptic vesicle replenishment was also enhanced. Furthermore, stimulated emission depletion microscopy suggested an increase in the numbers of Munc13-1 and RIM1 molecules within active zones. We propose that dynamic changes in the active zone components may be relevant for the increased fusion competence and synaptic vesicle replenishment during LTP

    Delay of computed tomography is associated with poor outcome in patients with blunt traumatic aortic injury a nationwide observational study in Japan

    Get PDF
    Katayama, Yusuke MD, PhD; Kitamura, Tetsuhisa MD, DrPHb; Hirose, Tomoya MD, PhDa,c; Kiguchi, Takeyuki MD, PhD; Matsuyama, Tasuku MD, PhDe; Sado, Junya PhDb; Kiyohara, Kosuke DrPH; Izawa, Junichi MD, DrPH; Tachino, Jotaro MD; Ebihara, Takeshi MD; Yoshiya, Kazuhisa MD, PhD; Nakagawa, Yuko MD, PhD; Shimazu, Takeshi MD, PhDa Delay of computed tomography is associated with poor outcome in patients with blunt traumatic aortic injury, Medicine: August 2018 - Volume 97 - Issue 35 - p e12112 doi: 10.1097/MD.000000000001211
    • …
    corecore