15 research outputs found
Lower bound analysis for shear assessment of full-scale RC girders subjected to axial tension
Axial tension force exerted as a result of a temperature change or shrinkage can cause the collapse of RC structural members. Design code provisions and analytical models such as Modified Compression Field Theory (MCFT) yield reasonable estimates of shear strength of RC beams subjected to axial tension. Nevertheless, their semi-empirical nature is not necessarily appropriate for shear assessment of existing RC structural members. The extra conservativeness and empirically determined parameters might require unnecessary maintenance work. A generalised model with rigorous formulation must be developed. This paper presents a purely theoretical model to predict the shear strength of RC beams under axial tension based on limit analysis. Without regressive functions and empirical functions, lower bound analysis enables shear strength derivation when the force equilibrium and strain compatibility are satisfied. Accuracy of the analysis was verified by comparison of its predictions with three experimental shear strengths of full-scale RC girders. An equal level of accuracy was observed betweenthe analytical solutions and MCFT-based predictions
Combination of plasma MMPs and PD-1-binding soluble PD-L1 predicts recurrence in gastric cancer and the efficacy of immune checkpoint inhibitors in non-small cell lung cancer
BackgroundThe tumor microenvironment (TME) impacts the therapeutic efficacy of immune checkpoint inhibitors (ICIs). No liquid biomarkers are available to evaluate TME heterogeneity. Here, we investigated the clinical significance of PD-1-binding soluble PD-L1 (bsPD-L1) in gastric cancer (GC) patients and non-small cell lung cancer (NSCLC) patients treated with PD-1/PD-L1 blockade.MethodsWe examined bsPD-L1, matrix metalloproteinases (MMPs), and IFN-γ levels in plasma samples from GC patients (n = 117) prior to surgery and NSCLC patients (n = 72) prior to and 2 months after ICI treatment. We also examined extracellular matrix (ECM) integrity, PD-L1 expression, and T cell infiltration in tumor tissues from 25 GC patients by Elastica Masson-Goldner staining and immunohistochemical staining for PD-L1 and CD3, respectively.ResultsbsPD-L1 was detected in 17/117 GC patients and 16/72 NSCLC patients. bsPD-L1 showed strong or moderate correlations with plasma MMP13 or MMP3 levels, respectively, in both GC and NSCLC patients. bsPD-L1 expression in GC was associated with IFN-γ levels and intra-tumoral T cell infiltration, whereas MMP13 levels were associated with loss of ECM integrity, allowing tumor cells to access blood vessels. Plasma MMP3 and MMP13 levels were altered during ICI treatment. Combined bsPD-L1 and MMP status had higher predictive accuracy to identify two patient groups with favorable and poor prognosis than tumor PD-L1 expression: bsPD-L1+MMP13high in GC and bsPD-L1+(MMP3 and MMP13)increased in NSCLC were associated with poor prognosis, whereas bsPD-L1+MMP13low in GC and bsPD-L1+(MMP3 or MMP13)decreased in NSCLC were associated with favorable prognosis.ConclusionPlasma bsPD-L1 and MMP13 levels indicate T cell response and loss of ECM integrity, respectively, in the TME. The combination of bsPD-L1 and MMPs may represent a non-invasive tool to predict recurrence in GC and the efficacy of ICIs in NSCLC
Bis(β-lactosyl)-[60]fullerene as novel class of glycolipids useful for the detection and the decontamination of biological toxins of the Ricinus communis family
Glycosyl-[60]fullerenes were first used as decontaminants against ricin, a lactose recognition proteotoxin in the Ricinus communis family. A fullerene glycoconjugate carrying two lactose units was synthesized by a [3 + 2] cycloaddition reaction between C60 and the azide group in 6-azidohexyl β-lactoside per-O-acetate. A colloidal aqueous solution with brown color was prepared from deprotected bis(lactosyl)-C60 and was found stable for more than 6 months keeping its red color. Upon mixing with an aqueous solution of Ricinus communis agglutinin (RCA120), the colloidal solution soon caused precipitations, while becoming colorless and transparent. In contrast, a solution of concanavalin A (Con A) caused no apparent change, indicating that the precipitation was caused specifically by carbohydrate–protein interactions. This notable phenomenon was quantified by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the results were discussed in terms of detection and decontamination of the deadly biological toxin in the Ricinus communis family
Breast cancer patient delay in Fukushima, Japan following the 2011 triple disaster: a long-term retrospective study
Abstract Background Little information is available concerning how patient delay may be affected by mass disasters. The main objectives of the present study are to identify whether there was a post-disaster increase in the risk of experiencing patient delay among breast cancer patients in an area affected by the 2011 triple disaster in Fukushima, Japan, and to elucidate factors associated with post-disaster patient delay. Sociodemographic factors (age, employment status, cohabitant status and evacuation status), health characteristics, and health access- and disaster-related factors were specifically considered. Methods Records of symptomatic breast cancer patients diagnosed from 2005 to 2016 were retrospectively reviewed to calculate risk ratios (RRs) for patient delay in every year post-disaster compared with the pre-disaster baseline. Total and excessive patient delays were respectively defined as three months or more and twelve months or more from symptom recognition to first medical consultation. Logistic regression analysis was conducted for pre- and post-disaster patient delay in order to reveal any factors potentially associated with patient delay, and changes after the disaster. Results Two hundred nineteen breast cancer patients (122 pre-disaster and 97 post-disaster) were included. After adjustments for age, significant post-disaster increases in RRs of experiencing both total (RR: 1.66, 95% Confidence Interval (CI): 1.02–2.70, p < 0.05) and excessive patient delay (RR: 4.49, 95% CI: 1.73–11.65, p < 0.01) were observed. The RRs for total patient delay peaked in the fourth year post-disaster, and significant increases in the risk of excessive patient delay were observed in the second, fourth, and fifth years post-disaster, with more than five times the risk observed pre-disaster. A family history of any cancer was the only factor significantly associated with total patient delay post-disaster (odds ratio: 0.38, 95% CI: 0.15–0.95, p < 0.05), while there were no variables associated with delay pre-disaster. Conclusions The triple disaster in Fukushima appears to have led to an increased risk of patient delay among breast cancer patients, and this trend has continued for five years following the disaster
Structural and magnetic properties of (Zn,Fe)Te thin films grown by MBE under Zn-rich flux condition
Discovery of selective and nonpeptidic cathepsin S inhibitors.
Nonpeptidic, selective, and potent cathepsin S inhibitors were derived from an in-house pyrrolopyrimidine cathepsin K inhibitor by modification of the P2 and P3 moieties. The pyrrolopyrimidine-based inhibitors show nanomolar inhibition of cathepsin S with over 100-fold selectivity against other cysteine proteases, including cathepsin K and L. Some of the inhibitors showed cellular activities in mouse splenocytes as well as oral bioavailabilities in rats
Structure-based Design of 4-Hydroxy-3,5-Substituted Piperidines as a New Class of Highly Efficacious Oral Direct Renin Inhibitors
Starting from the cis-configured 3,5-disubstituted piperidine direct renin inhibitor (DRI), (rac)-1, discovered from a target-family-tailored library by high throughput screening (HTS), a structure-based design effort was performed by optimization of both the prime and non-prime site residues flanking the central piperidine transition-state surrogate. This has resulted in analogs with improved potency and pharmacokinetic (PK) properties, and culminated in the identification of the 4-hydroxy-3,5-substituted piperidine, 35 as a development candidate. This compound showed high in vitro potency toward human renin with excellent off-target selectivity, 60% oral bioavailability in rat, and dose-dependent blood pressure lowering effects in the double-transgenic rat model