36 research outputs found

    Interactions between Dpr11 and DIP-γ control selection of amacrine neurons in Drosophila color vision circuits

    Get PDF
    Drosophila R7 UV photoreceptors (PRs) are divided into yellow (y) and pale (p) subtypes. yR7 PRs express the Dpr11 cell surface protein and are presynaptic to Dm8 amacrine neurons (yDm8) that express Dpr11’s binding partner DIP-γ, while pR7 PRs synapse onto DIP-γ-negative pDm8. Dpr11 and DIP-γ expression patterns define ‘yellow’ and ‘pale’ color vision circuits. We examined Dm8 neurons in these circuits by electron microscopic reconstruction and expansion microscopy. DIP-γ and dpr11 mutations affect the morphologies of yDm8 distal (‘home column’) dendrites. yDm8 neurons are generated in excess during development and compete for presynaptic yR7 PRs, and interactions between Dpr11 and DIP-γ are required for yDm8 survival. These interactions also allow yDm8 neurons to select yR7 PRs as their appropriate home column partners. yDm8 and pDm8 neurons do not normally compete for survival signals or R7 partners, but can be forced to do so by manipulation of R7 subtype fate

    Comparative study on nocturnal behavior of Aedes aegypti and Aedes albopictus.

    Get PDF
    Nocturnal behavior of non-bloodfed females of Aedes aegypti and Aedes albopictus was studied using an automatic recording device equipped with a photoelectric sensor. Carbon dioxide, heating, and the contrast of the black and white colors were used as attractive cues for mosquitoes. The nocturnal host seeking activity positively correlated with the increasing light intensity in both species. Ae. aegypti was found to be more sensitive to light than Ae. albopictus. The threshold of light intensity for the activation of the nocturnal host seeking activity was 10 lx (ca. 1 foot candle) in Ae. albopictus, respectively. Complete darkness during the daytime deactivated the host seeking activity of both species, irrespective of their increasing flight activity controlled by their intrinsic circadian rhythms. This suggested that visual cues are indispensable for host seeking behavior. The eye parameter value, the product of the ommatidial diameter, and the interommatidial angle were significantly larger in Ae. aegypti than those in Ae. albopictus, indicating that the eye of Ae. aegypti is more adapted to a darker environment.長崎大学学位論文 学位記番号:博(医)乙第1,782号 学位授与年月日:平成19年10月31

    Cholinergic Circuits Integrate Neighboring Visual Signals in a Drosophila Motion Detection Pathway

    Get PDF
    SummaryDetecting motion is a feature of all advanced visual systems [1], nowhere more so than in flying animals, like insects [2, 3]. In flies, an influential autocorrelation model for motion detection, the elementary motion detector circuit (EMD; [4, 5]), compares visual signals from neighboring photoreceptors to derive information on motion direction and velocity. This information is fed by two types of interneuron, L1 and L2, in the first optic neuropile, or lamina, to downstream local motion detectors in columns of the second neuropile, the medulla. Despite receiving carefully matched photoreceptor inputs, L1 and L2 drive distinct, separable pathways responding preferentially to moving “on” and “off” edges, respectively [6, 7]. Our serial electron microscopy (EM) identifies two types of transmedulla (Tm) target neurons, Tm1 and Tm2, that receive apparently matched synaptic inputs from L2. Tm2 neurons also receive inputs from two retinotopically posterior neighboring columns via L4, a third type of lamina neuron. Light microscopy reveals that the connections in these L2/L4/Tm2 circuits are highly determinate. Single-cell transcript profiling suggests that nicotinic acetylcholine receptors mediate transmission within the L2/L4/Tm2 circuits, whereas L1 is apparently glutamatergic. We propose that Tm2 integrates sign-conserving inputs from neighboring columns to mediate the detection of front-to-back motion generated during forward motion

    Interactions with presynaptic photoreceptors mediated by the Dpr11 and DIP-γ cell surface proteins control selection and survival of Drosophila amacrine neurons

    Get PDF
    Drosophila R7 UV photoreceptors (PRs) are divided into yellow (y) and pale (p) subtypes with different wavelength sensitivities. yR7 PRs express the Dpr11 cell surface protein and are presynaptic to Dm8 amacrine neurons (yDm8) that express Dpr11’s binding partner DIP-γ, while pR7 PRs synapse onto DIP-γ-negative pDm8 neurons. Dpr11 and DIP-γ expression patterns define yellow and pale medulla color vision circuits that project to higher-order areas. DIP- γ and dpr11 mutations affect the morphology of yDm8 arbors in the yellow circuit. yDm8 neurons are generated in excess during development and compete for presynaptic yR7 partners. Transsynaptic interactions between Dpr11 and DIP-γ are required for generation of neurotrophic signals that allow yDm8 neurons to survive. yDm8 and pDm8 neurons do not normally compete for neurotrophic support, but can be forced to do so by manipulating R7 subtype fates. DIP-γ-Dpr11 interactions allow yDm8 neurons to select yR7 PRs as their home column partners

    Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila

    Get PDF
    Information processing relies on precise patterns of synapses between neurons. The cellular recognition mechanisms regulating this specificity are poorly understood. In the medulla of the Drosophila visual system, different neurons form synaptic connections in different layers. Here, we sought to identify candidate cell recognition molecules underlying this specificity. Using RNA sequencing (RNA-seq), we show that neurons with different synaptic specificities express unique combinations of mRNAs encoding hundreds of cell surface and secreted proteins. Using RNA-seq and protein tagging, we demonstrate that 21 paralogs of the Dpr family, a subclass of immunoglobulin (Ig)-domain containing proteins, are expressed in unique combinations in homologous neurons with different layer-specific synaptic connections. Dpr interacting proteins (DIPs), comprising nine paralogs of another subclass of Ig-containing proteins, are expressed in a complementary layer-specific fashion in a subset of synaptic partners. We propose that pairs of Dpr/DIP paralogs contribute to layer-specific patterns of synaptic connectivity
    corecore