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ABSTRACT	

Drosophila	R7	UV	photoreceptors	(PRs)	are	divided	into	yellow	(y)	and	pale	(p)	subtypes	

with	different	wavelength	sensitivities.	yR7	PRs	express	the	Dpr11	cell	surface	protein	and	

are	presynaptic	to	Dm8	amacrine	neurons	(yDm8)	that	express	Dpr11’s	binding	partner	

DIP-γ,	while	pR7	PRs	synapse	onto	DIP-γ-negative	pDm8	neurons.	Dpr11	and	DIP-γ	

expression	patterns	define	yellow	and	pale	medulla	color	vision	circuits	that	project	to	

higher-order	areas.	DIP-γ	and	dpr11	mutations	affect	the	morphology	of	yDm8	arbors	in	the	

yellow	circuit.	yDm8	neurons	are	generated	in	excess	during	development	and	compete	for	

presynaptic	yR7	partners.	Transsynaptic	interactions	between	Dpr11	and	DIP-γ	are	

required	for	generation	of	neurotrophic	signals	that	allow	yDm8	neurons	to	survive.	yDm8	

and	pDm8	neurons	do	not	normally	compete	for	neurotrophic	support,	but	can	be	forced	to	

do	so	by	manipulating	R7	subtype	fates.	DIP-γ-Dpr11	interactions	allow	yDm8	neurons	to	

select	yR7	PRs	as	their	home	column	partners.		
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INTRODUCTION	

The	chemoaffinity	hypothesis	(Sperry,	1963)	proposed	that	assembly	of	neural	circuits	

involves	interactions	among	cell-surface	proteins	(CSPs)	that	label	individual	neurons	or	

neuronal	types.	This	hypothesis	applies	well	to	systems	such	as	the	Drosophila	brain	and	

vertebrate	retina	in	which	synaptic	connectivity	is	largely	controlled	by	intrinsic	gene	

expression	patterns.	There	are	approximately	1000	CSPs	encoded	in	the	Drosophila	

genome	that	are	likely	to	be	involved	in	cell-cell	recognition	events	(Kurusu	et	al.,	2008).	In	

the	pupal	visual	system,	(Tan	et	al.,	2015)	characterized	CSP	gene	expression	in	R7	and	R8	

photoreceptors	(PRs)	and	the	five	types	of	lamina	neurons	(L1-L5),	which	relay	

information	from	R1-R6	PRs.	Each	of	these	seven	neuronal	types	expresses	more	than	250	

of	the	1000	CSP	genes,	and	each	type	differs	from	any	of	the	others	by	expression	of	least	

50	CSP	genes.		

	

To	find	the	CSPs	in	these	cellular	expression	profiles	that	are	likely	to	be	important	for	

circuit	assembly,	we	and	others	have	focused	on	interaction	partners	expressed	on	

synaptically	connected	neurons.	The	“Dpr-ome”	is	a	network	of	immunoglobulin	

superfamily	(IgSF)	CSPs	that	was	discovered	in	an	in	vitro	“interactome”	screen	of	all	

Drosophila	IgSF	proteins(Carrillo	et	al.,	2015;	Özkan	et	al.,	2013).	The	current	Dpr-ome	has	

21	2-IgSF	Dpr	proteins	(Nakamura	et	al.,	2002),	each	of	which	binds	to	one	or	more	of	the	

11	3-IgSF	DIP	proteins.	Most	DIPs	interact	with	multiple	Dprs	and	vice	versa,	and	their	

binding	affinities	vary	between	1	and	200	µM	(Cosmanescu	et	al.,	2018).	Each	DIP	and	Dpr	

is	expressed	in	a	unique	subset	of	neurons	at	each	stage	of	development.	In	the	visual	

system,	neurons	expressing	a	DIP	tend	to	be	postsynaptic	to	neurons	that	express	a	Dpr	to	
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which	that	DIP	binds	in	vitro	(Carrillo	et	al.,	2015;	Cosmanescu	et	al.,	2018;	Davis	et	al.,	

2018;	Tan	et	al.,	2015;	Xu	et	al.,	2018b).	DIPs	and	Dprs	define	an	IgSF	family,	present	in	

both	protostomes	and	deuterostomes,	that	has	been	denoted	as	the	Wirins.	The	five	

mammalian	IgLON	proteins	are	members	of	the	Wirin	family	(Cheng	et	al.,	2019b).	

		

	Genetic	analysis	of	DIP-Dpr	pairs	has	revealed	a	variety	of	phenotypes.	DIP-γ	and	Dpr11	

regulate	neuromuscular	junction	(NMJ)	morphology	in	larvae,	and	control	survival	of	DIP-

γ-expressing	postsynaptic	cells	in	the	pupal	optic	lobe	(Carrillo	et	al.,	2015;	Xu	et	al.,	

2018b).	Interactions	between	postsynaptic	DIP-α	and	presynaptic	Dprs	6	and	10	also	

control	survival	of	postsynaptic	optic	lobe	neurons,	and	can	determine	their	synaptic	

connectivity	patterns	(Xu	et	al.,	2018b).	In	the	larval	and	adult	neuromuscular	systems,	

however,	DIP-α	and	Dpr10	control	branching	of	DIP-α-expressing	motor	axons	onto	muscle	

fibers	that	express	Dpr10	(Ashley	et	al.,	2019;	Cheng	et	al.,	2019a;	Venkatasubramanian	et	

al.,	2019).	Dprs	and	DIPs	regulate	fasciculation	and	sorting	of	olfactory	receptor	neuron	

axons	in	the	antennal	lobe	(Barish	et	al.,	2018).	In	the	lamina	of	the	optic	lobe,	DIPs	prevent	

ectopic	synapse	formation	(Xu	et	al.,	2018a).	

	

DIPs	and	Dprs	may	be	components	of	large	CSP	repertoires	that	confer	a	unique	surface	

identity	to	each	type	of	neuron.	Each	neuron	uses	its	repertoire	to	sculpt	its	morphology,	

determine	its	synaptic	connectivity,	and	regulate	its	physiological	properties.	The	total	

number	of	CSP	genes	is	only	about	fourfold	larger	than	the	size	of	a	repertoire	(Tan	et	al.,	

2015),	so	the	repertoires	of	different	neurons	necessarily	overlap.	Two	neuronal	types	
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might	have	some	of	the	same	CSPs	in	their	repertoires	but	use	them	in	different	ways,	

depending	on	their	developmental	needs.		

	

Here	we	show	that	Dpr11	and	DIP-γ	expression	patterns	define	a	labeled-line	color	vision	

circuit	that	includes	R7	PRs	and	Dm8	amacrine	neurons	in	the	medulla	of	the	optic	lobe.	R7	

and	R8	transmit	chromatic	information	from	the	retina	to	the	medulla.	R7	is	a	UV	receptor,	

while	R8	responds	to	visible	light.	Each	ommatidium	in	the	compound	eye	contains	an	R7,	

an	R8,	and	six	achromatic	PRs	(R1-R6)	that	transmit	information	relevant	to	motion	

detection	(Figure	1A).	R1-R6	synapse	onto	lamina	neurons,	which	in	turn	project	to	layers	

M1-M5	of	the	medulla.	R7	and	R8	axons	grow	through	the	lamina	and	into	the	medulla,	

where	they	terminate	in	layers	M6	(R7)	and	M3	(R8)	(Figure	1C).	The	medulla	is	a	ten-

layered	neuropil	that	is	divided	into	columns,	each	of	which	roughly	corresponds	to	one	of	

the	~750	ommatidia	of	the	compound	eye.	It	contains	about	100	types	of	neurons.	Some	of	

these	arborize	only	in	the	medulla,	either	in	single	columns	or	across	multiple	columns,	

while	others	have	dendrites	in	the	medulla	and	project	to	higher-order	visual	areas,	

including	the	lobula	and	lobula	plate	(reviewed	by	(Hadjieconomou	et	al.,	2011;	Sanes	and	

Zipursky,	2010)).	

	

There	are	two	major	types	of	ommatidia,	pale	(p)	and	yellow	(y),	which	are	randomly	

distributed	in	the	retina.	R7	and	R8	PRs	in	these	ommatidia	are	divided	into	subtypes	with	

different	spectral	sensitivities.		p	ommatidia	(~35%)	detect	shorter	wavelengths,	and	have	

R7	that	express	the	Rh3	(shorter-wave	UV)	rhodopsin	and	R8	that	express	Rh5	(blue),	

while	y	ommatidia	(~65%)	detect	longer	wavelengths,	and	have	R7	that	express	Rh4	
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(longer-wave	UV)	and	R8	that	express	Rh6	(green)	(reviewed	by	(Viets	et	al.,	2016))(Figure	

1B).	The	R7	and	R8	within	an	ommatidium	mutually	inhibit	each	other(Schnaitmann	et	al.,	

2018).		

	

Drosophila	phototaxes	to	UV	(R7)	in	preference	to	visible	light	(R8).	It	also	exhibits	true	

color	vision,	being	able	to	make	intensity-independent	discriminations	among	hues	that	

differentially	stimulate	p	and	y	R8	channels	(Melnattur	et	al.,	2014)(reviewed	by	(Song	and	

Lee,	2018)).	To	be	able	to	distinguish	blue	from	green,	or	short	from	long-wavelength	UV,	

the	fly	must	have	different	neural	responses	to	stimulation	of	p	and	y	R8	and	R7	channels	

and	utilize	these	response	profiles	to	control	its	actions.		

	

In	our	earlier	work,	we	showed	that	Dpr11	is	selectively	expressed	by	yR7	PRs	(Figures	1E-

E’)	while	its	binding	partner	DIP-γ	is	expressed	by	a	subset	of	Dm8	amacrine	neurons,	

which	are	the	primary	synaptic	partners	for	R7	(Carrillo	et	al.,	2015).	Here	we	show	that	

yR7	PRs	specifically	connect	to	DIP-γ-expressing	Dm8	neurons	(yDm8),	while	pR7	PRs	

connect	to	DIP-γ-negative	Dm8	neurons	(pDm8)	in	their	respective	y	and	p	“home	

columns”.	Analysis	of	the	electron	microscopic	(EM)	reconstruction	of	the	medulla	

(Takemura	et	al.,	2013;	Takemura	et	al.,	2015)	in	light	of	this	connection	pattern	shows	

that	there	are	separate	yellow	and	pale	circuits	that	could	be	used	for	discriminating	long	

and	short-wavelength	UV	inputs.	The	yellow	circuit	might	be	constructed	using	DIP-γ-

Dpr11	interactions,	since	both	yDm8	and	Tm5a	projection	neurons,	which	are	also	

selectively	connected	to	yR7	PRs,	express	DIP-γ	(Cosmanescu	et	al.,	2018;	Karuppudurai	et	
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al.,	2014).	DIP-γ	and	Dpr11	are	both	required	for	normal	morphogenesis	of	yDm8	distal	

dendrites,	which	fasciculate	with	yR7	terminals	and	contain	many	of	the	R7-Dm8	synapses.	

	

Given	the	existence	of	separate	yellow	and	pale	circuits,	how	does	the	system	ensure	that	

each	yR7	has	a	yDm8	partner?	Here	we	show	that	DIP-γ-expressing	yDm8	neurons	are	

generated	in	excess	during	development	and	compete	for	presynaptic	yR7	partners.	yR7	

PRs	and	yDm8	neurons	recognize	each	other	using	Dpr11-	DIP-γ	interactions.	The	

engagement	of	DIP-γ	by	Dpr11	is	necessary	for	production	of	neurotrophic	signals	that	

allow	yDm8	neurons	to	survive.		
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RESULTS	

Dm8	and	R7	subtypes	are	present	in	matching	ratios	

DIP-γ	interacts	with	four	Dpr	partners	with	similar	affinities:	Dprs	11,	15,	16	and	17	

(Figure	1F).	A	subset	of	R7	PRs	in	pupal	retina	express	the	dpr11MiMIC	GFP	reporter	

(henceforth	denoted	as	dpr11GFP),	and	these	were	confirmed	to	be	yR7	by	co-labeling	with	a	

Rh4	reporter	(Figures	1B,	D-E)	(Carrillo	et	al.,	2015).	Reporters	for	Dprs	15,	16,	and	17	are	

not	detectably	expressed	in	the	pupal	retina.	Here	we	classify	two	subtypes	of	Dm8	

neurons,	those	which	express	DIP-γ	(yDm8)	and	those	which	do	not	(pDm8)	(Figure	1G-G’).	

We	determined	the	yDm8	population	in	the	adult	medullary	cortex	as	those	cells	that	

express	RFP	under	the	control	of	a	late	pupal	pan-Dm8	driver	and	GFP	from	the	DIP-γ	MiMIC	

GFP	reporter	(henceforth	denoted	as	DIP-γ	GFP).	The	pDm8	population	was	identified	as	

those	cells	that	express	RFP	but	not	GFP;	there	are	no	known	markers	or	drivers	that	

selectively	label	pDm8	neurons.	For	developmental	studies,	and	to	determine	the	yDm8	

population	without	the	driver,	we	used	DIP-γ	GFP	together	with	the	transcription	factor	

Dachshund	(Dac),	which	is	expressed	in	both	y	and	pDm8	neurons	(Figures	1G-

G’)(Hasegawa	et	al.,	2011).	Dac+,	DIP-γ	GFP+	cells	are	present	from	the	beginning	of	pupal	

development.	

	

yR7	and	pR7	ommatidia	are	present	at	a	65y:35p	ratio,	and	because	of	retinotopy	we	

expect	the	same	ratio	of	y	and	p	columns	in	the	medulla.	We	find	that	yDm8	and	pDm8	

neurons	in	wild-type	are	present	at	a	ratio	of	60y:40p,	which	is	similar	to	the	65:35	ratio	of	

the	input	R7	PRs	(Figures	1B,	H)	(Viets	et	al.,	2016).		
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Figure	1:	yDm8	and	pDm8	populations	are	present	in	the	same	ratio	as	their	
presynaptic	input	yR7	and	pR7	photoreceptors.	
(A-C)	Overview	of	the	Drosophila	visual	system.	(A)	Compound	eye.	Each	ommatidium	
contains	8	PRs.	Rhabdomeres	of	7	PRs	seen	in	diagram	(R7	is	stacked	on	top	of	R8).	R1-6	
are	outer	PRs,	and	R7	and	R8	are	inner	PRs.	(B)	Three	ommatidial	subtypes	in	the	retina:	
yellow	(y),	pale	(p)	and	Dorsal	Rim	Area	(DRA).	Each	ommatidium	is	assigned	as	y	or	p	
based	on	rhodopsin	expression	patterns	in	R7	and	R8	PRs.	y	and	p	ommatidia	are	
distributed	randomly	in	a	~65y:35p	ratio	in	wild-type.	Rh4,	Dpr11	and	Spineless	
transcription	factor	(Ss)	are	expressed	in	R7	only	in	y	ommatidia.	(C)	Schematic	of	the	adult	
optic	lobe.	yR7	and	pR7,	and	yR8	(green)	and	pR8	(cyan)	project	to	M6	and	M3	layers	of	the	
medulla,	respectively.	The	axons	of	outer	PRs	(grey)	terminate	in	the	lamina.	yR7	and	pR7	
synapse	on	yDm8	and	pDm8	in	M6.	Re:	Retina;	La:	Lamina;	Me:	Medulla;	Lop:	Lobula	plate;	
Lo:	Lobula.	
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(D)	dpr11GFP	is	expressed	in	R7	in	some	ommatidia	(yellow	dashed	circle)	and	absent	in	
others	(white	dashed	circle).	R7	indicated	by	small	circles.	Mid-pupal	retina	labeled	with	
anti-Pros	for	all	R7	PRs	(magenta),	anti-GFP	for	dpr11GFP	reporter	(green)	and	anti-Elav	for	
all	neurons	(blue).	Maximum	intensity	projection;	scale	bar	5	µm.	
(E-E’)	yR7	co-expresses	dpr11GFP	and	Rh4.	Dpr11	is	expressed	in	Rh4+	R7	in	yellow	
ommatidia	(arrows)	and	absent	from	Rh3+	R7	in	pale	ommatidia	(white	dashed	circle).	
Late	pupal	retina	labeled	with	anti-RFP	for	Rh4>tdTomato	(magenta)	and	anti-GFP	for	
dpr11GFP	reporter	(green).	
(F)	The	DIP-γ	hub	consists	of	Dprs	11,	15,	16	and	17.	Dprs	are	2-IgSF	domain	CSPs	and	
interact	with	DIPs,	which	are	3-IgSF	domain	CSPs.	KDs	shown	here	are	from	(Cosmanescu	
et	al.,	2018).	Ig	domains	indicated	by	ovals.	
(G-G’)	yDm8	and	pDm8	cell	bodies	in	adult	medullary	cortex.	Adult	optic	lobes	labeled	with	
anti-RFP	for	pan-Dm8	driver>RFP	(red),	anti-GFP	for	DIP-γGFP	reporter	(green)	and	anti-
Dac	for	transcription	factor	Dachshund	(blue).	yDm8	expresses	RFP,	GFP	and	Dac	and	
pDm8	expresses	RFP	and	Dac.	Inset	in	G	shown	in	G’.	yDm8	and	pDm8	cell	bodies	indicated	
(arrows	in	merged,	arrowheads	in	individual	panels).	Maximum	intensity	projection;	scale	
bar	20	µm.	
(H)	yDm8	and	pDm8	populations	are	present	in	a	60:40	ratio,	approximately	matching	the	
ratio	of	the	input	R7	PRs.	The	cell	numbers	of	y	and	p	Dm8	neurons	counted	with	the	pan-
Dm8	driver	and	DIP-γGFP	are	indicated	on	the	y-axis.	yDm8:	266.4+/-	17.2,	pDm8:	179.4+/-	
25.6	(n	=	8-11	optic	lobes;	error	bars	indicate	std.	deviation).	
_________________________________________________________________________________________________________	

	

Dm8	neurons	are	both	unicolumnar	and	multicolumnar	in	their	coverage	of	columns	in	the	

neuropil.		The	arbor	of	each	Dm8	contacts	13-16	medulla	columns,	but	most	synapses	are	

made	with	the	R7	in	the	central	(home)	column	(Fischbach	and	Dittrich,	1989;	Gao	et	al.,	

2008;	Takemura	et	al.,	2013;	Takemura	et	al.,	2015).	Figure	2A	shows	a	horizontal	view	

(side-view	as	in	Figure	1C)	of	a	rendering	of	an	R7	terminal	and	aDm8	arbor	from	an	EM	

reconstruction	(Takemura	et	al.,	2015).	The	thick	bundle	of	dendritic	processes	at	the	

center	of	the	arbor	makes	extensive	contacts	with	the	R7	home	column,	and	contains	the	

majority	of	R7-Dm8	synapses	(Figure	2A,	Table	1).	These	central	dendritic	projections	

extend	distally	from	M6	to	M4,	and	we	have	denoted	them	as	the	“sprig”	of	a	Dm8	arbor.	

The	lateral	arbor	of	each	Dm8	overlaps	extensively	with	other	Dm8	arbors,	but	the	center	
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of	highest	arbor	density,	the	sprig,	tiles	the	medulla.	The	coverage	pattern	of	a	typical	Dm8	

is	thus	indicative	of	approximately	1	cell	per	column.		

	

Although	the	ratios	of	the	input	PRs	and	output	targets	match,	the	Dm8	cell	numbers	we	

obtained	(266	yDm8	and	179	pDm8)	are	insufficient	for	innervation	of	the	expected	730-

785	yR7	plus	pR7	columns	in	the	medulla	(Posnien	et	al.,	2012)	even	when	we	account	for	

the	fact	that	some	Dm8	neurons	(~6%;	see	below)	have	two	home	columns.	This	suggests	

that	the	Dm8	driver	is	not	completely	penetrant.	Indeed,	when	we	use	Dac	and	DIP-γGFP	to	

determine	yDm8	populations,	we	obtain	a	larger	number	(~320),	although	this	is	still	less	

than	the	expected	total	number	of	yDm8	neurons,	which	is	440-480.		

	

yDm8	selectively	innervate	yR7	in	their	home	columns	and	avoid	pR7	

To	evaluate	the	specificity	of	connections	between	Dm8	and	R7	subtypes,	we	generated	

single-cell	Dm8	(flipout)	clones.	For	yDm8	flipouts,	we	used	a	split-GAL4	driver	that	

includes	a	DIP-γ	MiMIC	GAL4-DBD	hemi-driver	to	selectively	label	DIP-γ-expressing	Dm8	

(Figures	2B,	D,	Figure	2-figure	supplement	1C-C’).	For	pDm8	flipouts,	we	used	a	pan-Dm8	

driver	(Nern	et	al.,	2015)	and	Rh4-lacZ	to	identify	clones	whose	home	column	R7	lacked	

LacZ	labeling,	since	there	is	no	pDm8-specific	driver	(Figures	2C,	E).		

	

yDm8	and	pDm8	arbors	have	similar	morphologies,	with	the	prominent	dendritic	sprig	

identifying	the	home	column	(Figures	2A-C)	(Gao	et	al.,	2008;	Nern	et	al.,	2015).	Using	the	

yDm8	split-GAL4	driver,	we	exclusively	labeled	Dm8	neurons	that	have	yR7	as	the	home	

column	(43/43	flipouts;	Figures	2B,	D;	Figure	2-figure	supplement	1A).	This	indicates	that	
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yDm8	specifically	innervate	yR7	and	avoid	pR7	in	the	home	column.	We	also	observed	

yDm8	with	two	home	columns	at	a	frequency	of	~6%	(4/64	clones)	(Figure	2-figure	

supplement	1A).	All	four	had	both	sprigs	on	yR7	columns.	Since	we	find	that	all	DIP-γ-

positive	Dm8	neurons	have	yR7	home	columns,	we	can	infer	that	cells	labeled	using	the	

pan-Dm8	driver	that	have	pR7	home	columns	must	be	the	DIP-γ-negative	pDm8	subtype.	

Single	cell	clones	of	pDm8	were	found	to	innervate	only	pR7	(21/72	total	clones;	one	had	

two	pR7	home	columns	(Figures	2C,	E,	Figure	2-figure	supplement	1A).	Specificity	was	

further	confirmed	by	labeling	mid-pupal	optic	lobes	with	DIP-γ	antibody	and	dpr11GFP.	DIP-

γ	labeling	is	seen	in	the	M6	layer	only	under	yR7	that	co-express	Dpr11	and	Chaoptin	(Chp)	

and	not	under	pR7	that	are	labeled	with	Chp	alone	(Figure	2F).	

	

Outside	of	their	home	columns,	yDm8	and	pDm8	dendritic	arbors	contact	both	types	of	R7.	

Cross-sectional	(top-down)	views	of	a	yDm8	clone	showed	that	it	contacted	9	yR7	and	4	

pR7,	while	a	pDm8	contacted	5	yR7	and	10	pR7	(including	their	respective	home	columns)	

(Figures	2D-E).		

	

The	two	subtypes	of	Dm8	are	distinguished	by	the	expression	of	DIP-γ.	To	evaluate	

whether	the	yDm8	and	pDm8	populations	have	separate	origins,	we	used	DIP-γ-GAL4	to	

express	FLP	in	a	line	with	a	flipout	cassette	(LexAop-FRT-stop-FRT)	driving	a	GFP	reporter	

and	a	pan-Dm8	LexA	driver	and	examined	M6	GFP	labeling	(Figure	2G,	Figure	2-figure	

supplement	1B)..	If	yDm8	and	pDm8	originate	as	separate	populations,	we	would	expect	

gaps	to	be	present	in	M6	(like	those	seen	with	DIP-γGFP	(Figure	2H’)),	because	the	

conditional	DIP-γ	GFP	reporter	would	be	expressed	only	in	yDm8.	In	an	alternative	model,	
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all	Dm8	neurons	would	originate	as	a	single	DIP-γ+	population,	but	DIP-γ	would	remain	on	

only	in	those	Dm8	that	establish	a	stable	contact	with	a	Dpr11+	yR7.	In	the	subset	of	Dm8	

that	form	contacts	with	pR7,	DIP-γ	would	be	switched	off.	If	the	latter		model	were	correct,	

the	conditional	GFP	reporter	would	be	visualized	as	a	continuous	line	in	the	M6	layer,	

similar	to	that	seen	with	a	pan-Dm8	driver	(Figure	2H”).	Figure	2G	and	Figure	2-figure	

supplement	1B	show	that	there	are	gaps	in	the	M6	layer,	,	indicating	that	the	two	Dm8	

subtypes	are	in	fact	separate	populations.		
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Figure	2:	yDm8	neurons	selectively	innervate	yR7	in	their	home	columns	and	avoid	
pR7,	and	vice	versa.	
(A)	Rendering	of	a	yR7	terminal	and	a	yDm8	arbor	from	an	EM	reconstruction,	in	a	
horizontal	view.	The	distal	dendritic	projection	(sprig;	arrowhead)	of	Dm8	extensively	
contacts	the	R7	home	column	(asterisk).	Dm8,	cyan;	R7,	magenta.	Black	balls	indicate	R7	T-
bars	(output	synapses).	
(B-E)	Single	flipout	clones	generated	either	with	the	DIP-γ	split-Gal4	Dm8	driver	(denoted	
as	yDm8	split-Gal4	driver	in	Figure	2–figure	supplement	1A)	for	yDm8	or	with	pan-Dm8	
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driver	for	pDm8.	Adult	optic	lobes	labeled	with	anti-GFP	for	flipout	clone,	anti-LacZ	for	yR7	
reporter	Rh4-lacZ	and	anti-Chaoptin	(Chp)	for	all	PRs.	Medulla	columns	were	identified	as	
pale	or	yellow	with	yR7	reporter	(magenta)	and	Chp	(blue);	pR7	columns	were	identified	
by	the	absence	of	Rh4-LacZ	labeling.	Maximum	intensity	projection;	scale	bar	5	µm.	

(B-B’)	Horizontal	view	of	a	yDm8.	The	yDm8	distal	dendritic	projection	(sprig;	arrowhead)	
extends	distally	along	the	home	column	yR7	(asterisk)	to	the	M4	layer.		
(C-C’)	Horizontal	view	of	a	pDm8.	pDm8	has	a	similar	morphology	to	yDm8,	with	the	sprig	
(arrowhead)	in	contact	with	a	pR7	home	column	(asterisk).			
(D-D’)	Cross-sectional	(top-down)	view	of	a	yDm8.	The	dendritic	arbor	of	this	yDm8	
contacts	13	columns	(9y	and	4p).	Home	column	yR7	indicated	by	yellow	dashed	circle.		
	(E-E’)	Cross-sectional	view	of	a	pDm8.	The	dendritic	arbor	of	this	pDm8	contacts	14	
columns	(10p	and	5y).	Home	column	pR7	indicated	by	white	dashed	circle.	
(F)	DIP-γ-expressing	yDm8	neurons	specifically	contact	Dpr11-expressing	yR7	home	
columns.	Horizontal	view	of	mid-pupal	medulla	labeled	with	anti-DIP-γ	(red),	anti-GFP	for	
dpr11GFP	reporter	(green)	and	anti-Chp	for	all	PRs	(blue).	All	yR7	PRs	have	DIP-γ	labeling	
abutting	the	R7	(asterisks)	and	none	of	the	pR7	PRs	have	any	DIP-γ	labeling	apposed	to	
them	(bracket).	Maximum	intensity	projection;	scale	bar	10	µm.	
(G)	yDm8	and	pDm8	populations	have	independent	origins.	The	dendritic	arbors	of	yDm8	
neurons	are	labeled	in	flies	carrying	DIP-γ	Gal4>Flp	and	pan-Dm8-LexA>LexAop-FRT-stop-
FRT>GFP	transgenes.	pDm8	that	are	not	labeled	appear	as	gaps	(arrowheads)	in	the	M6	
layer	(arrow),	similar	to	those	seen	when	only	yDm8	neurons	are	labeled	by	DIP-γGFP	(H’).	
Adult	optic	lobes	were	labeled	with	anti-GFP	(green).	Maximum	intensity	projection;	scale	
bar	10	µm.	
(H’-H”)	Gaps	representing	pDm8	arbors	are	present	in	M6	layers	labeled	with	the	DIP-γGFP	
reporter,	but	not	in	M6	labeled	with	the	pan-Dm8	reporter.	Adult	optic	lobes	labeled	with	
anti-GFP	for	DIP-γGFP	reporter	(H’)	and	anti-RFP	for	pan-Dm8	Gal4>RFP	(H”).	Gaps	are	
marked	(arrowhead	in	H’)	in	the	M6	layer	(arrows).	The	pan-Dm8	driver	also	labels	lamina	
neuron	L3,	which	is	seen	as	faint	labeling	above	the	Dm8	layer.	Single	confocal	slice;	scale	
bar	10	µm.	
_________________________________________________________________________________________________________	

Yellow	and	pale-specific	synaptic	connections	in	color	vision	circuits	

Most	R7	output	synapses	are	made	onto	Dm8,	Dm9	(a	multicolumnar	medulla	intrinsic	

neuron),	Tm5a,	Tm5b,	and	Tm5c	(Gao	et	al.,	2008;	Karuppudurai	et	al.,	2014;	Takemura	et	

al.,	2013;	Takemura	et	al.,	2015).	Tm5a/b/c	neurons	project	to	the	lobula,	and	are	likely	to	

be	the	main	output	neurons	of	R7	circuits.	To	define	the	synaptic	connections	of	these	

neurons	and	determine	whether	they	differ	between	the	y	and	p	columns,	we	examined	the	

EM	reconstruction	of	the	medulla	(Takemura	et	al.,	2013;	Takemura	et	al.,	2015).		
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The	morphologies	of	y	and	p	R7	and	Dm8	neurons,	as	visualized	in	the	EM	reconstruction,	

do	not	allow	us	to	distinguish	their	subtypes.	However,	the	main	dendritic	branch	of	Tm5a	

was	found	to	associate	with	yR7	but	not	with	pR7	axons	in	a	light-level	analysis	

(Karuppudurai	et	al.,	2014),	suggesting	that	yR7	selectively	synapses	onto	Tm5a.	Using	this	

hypothesis	as	a	guide,	we	identified	five	candidate	yR7	PRs	(in	columns	A,	E,	F,	J,	and	K)	and	

three	pR7	PRs	(in	columns	Home,	B	and	D)	(Table	1).	There	are	seven	Dm8	neurons	whose	

home	columns	correspond	to	these	eight	R7	PRs	(Dm8-B/home	has	two	home	columns).	

Each	R7	makes	many	more	output	synapses	onto	its	home	column	Dm8	than	onto	other	

Dm8	neurons,	allowing	us	to	identify	B/home	and	D	as	pDm8,	while	A,	E,	F,	J,	and	K	are	

yDm8	(Table	1).	There	is	no	apparent	specificity	in	synaptic	connectivity	between	y	and	p	

R7	and	Dm8	subtypes	outside	of	the	home	column	(Table	1-table	supplement).		

	

To	analyze	projection	neuron	input	specificity,	we	counted	synapses	made	by	y	and	p	R7	

PRs	onto	Tm5a	and	Tm5b.	The	five	yR7	make	output	synapses	only	onto	Tm5a	and	not	

Tm5b,	which	was	the	basis	for	their	assignment	as	y	(Karuppudurai	et	al.,	2014).	The	three	

pR7	synapse	onto	Tm5b	and	not	Tm5a	(Table	1).	Thus,	Tm5a	and	Tm5b	represent	separate	

output	channels	for	y	(Rh4)	and	p	(Rh3)	inputs	for	this	set	of	columns	(see	Table	1-table	

supplement	legend).	Tm5a	expresses	DIP-γ,	while	Tm5b	does	not	(Cosmanescu	et	al.,	

2018).	This	suggests	that	the	selective	connection	of	yR7	to	both	yDm8	and	Tm5a	in	the	

home	column	might	involve	Dpr11-DIP-γ	interactions.	There	are	no	GAL4	drivers	that	

distinguish	between	Tm5a	and	Tm5b,	so	we	cannot	determine	if	yR7-Tm5a	connections	

are	altered	in	mutants.	
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Dm8	arbors	contain	both	pre-	and	postsynaptic	elements,	and	Dm8	is	presynaptic	to	

Tm5a/b	and	Dm9.	We	find	that	Dm8	output	synapses	onto	Tm5a/b	have	a	similar	

specificity	to	the	R7	output	synapses.	Both	pDm8	neurons	almost	exclusively	synapse	onto	

Tm5b	and	not	Tm5a,	and	four	of	the	five	yDm8	neurons	(E,	F,	J	and	K)	make	more	synapses	

onto	Tm5a	than	Tm5b	(yDm8-A,	however,	makes	ten	synapses	onto	Tm5b-home	and	only	

five	onto	Tm5a-A;	Table	1).	Each	Dm9	receives	input	from	both	types	of	R7	and	Dm8,	and	

makes	output	synapses	onto	multiple	R7	neurons	(Table	1-table	supplement).	
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Table	1:	Synaptic	connections	among	R7,	Dm8,	and	Tm5a/b	from	the	EM	
reconstruction.	

The	entries	in	column1	indicate	the	column	and	y/p	identities	for	each	R7	and	Dm8.	The	
entries	in	row	1	indicate	the	column	and	y/p	identities	for	the	Dm8,	Tm5a,	and	Tm5b	
neurons	that	are	postsynaptic	(and	sometimes	presynaptic)	to	the	R7	and	Dm8	neurons.	In	
each	box,	the	x:y	nomenclature	indicates	the	numbers	of	output	synapses	and	input	
synapses.	The	layer	in	which	most	of	these	synapses	are	located	is	also	indicated	(M5	or	
M6).	At	the	bottom	are	maps	of	the	arrangement	of	columns	in	the	reconstruction,	from	
(Takemura	et	al.,	2015),	with	y	columns	indicated	in	gold	and	p	columns	in	blue	in	the	
right-hand	map.	We	could	not	assign	y/p	identities	to	columns	C,	P,	or	Q,	and	there	are	no	
R7	outputs	listed	for	the	other	columns.	Tm5-C	has	an	ambiguous	morphology	and	could	be	
either	a	Tm5a	or	a	Tm5b,	and	R7-P	and	R7-Q	have	no	listed	synapses	onto	Tm5a	or	b.	Table	
1-table	supplement	contains	additional	information	for	non-home-column	Dm8	inputs,	and	
synapses	onto	Tm5c	and	Dm9.		

______________________________________________________________________________________________________	
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R7	synapses	are	polyadic,	and	Dm8	and	Tm5a/b	often	sit	together	at	synaptic	sites.	Figures	

3F	and	G	show	R7	T-bars	(active	zone	elements	marking	output	synapses)	adjacent	to	both	

yDm8	and	Tm5a,	and	pDm8	and	Tm5b,	respectively.		In	column	E,	the	yR7-E	axon	terminal,	

yDm8-E	sprig,	and	Tm5a-E	dendritic	branch	are	tightly	wrapped	around	each	other	

(Figures	3A,	C).	yR7-E	T-bars	are	distributed	in	layers	M4-M6,	and	are	apposed	to	

postsynapses	in	the	yDm8-E	sprig	and	the	distal	dendritic	branch	of	the	Tm5a-E	neuron	

(Figure	3C).	Most	yDm8-E	output	synapses	are	onto	Tm5a-E	and	Dm9	(Table	1,	Table	1-

table	supplement),	and	these	are	distributed	between	the	sprig	in	M4-M5	and	the	main	

arbor	in	M6	(Figure	3C	and	associated	videos	1	and	2).	The	only	pDm8	with	one	home	

column	in	the	reconstructed	volume	is	pDm8-D.	Although	pDm8	usually	have	robust	sprigs	

(e.g.,	Figure	2C),	pDm8-D	has	a	very	thin	sprig,	and	most	pR7-D	and	pDm8-D	T-bars	are	in	

M6	(Figure	3D	and	associated	videos	3	and	4).		

	

pR7-B,	pR7-home,	pDm8-B/home,	Tm5b-B,	and	Tm5b-home	form	a	two-home	column	

circuit	(the	individual	cells	of	this	circuit	are	shown	in	Figure	3-figure	supplement	1).	The	B	

sprig	of	pDm8-B/home	and	one	of	the	dendritic	branches	of	Tm5b-B	are	both	wrapped	

around	the	pR7-B	terminal,	while	the	pR7-home	terminal	is	more	loosely	associated	with	

the	home	sprig	of	pDm8-B/home	and	dendritic	branches	of	both	Tm5b	neurons	(Figure	3E	

and	associated	videos	5	and	6,	and	Figure	3-figure	supplement	1).	All	pR7-B!Tm5b	

synapses	(14)	and	most	pDm8-B/home!Tm5b	synapses	(30	vs.	4)	are	onto	Tm5b-B.	pR7-

home	makes	similar	numbers	of	synapses	onto	Tm5b-B	and	Tm5b-home	(Table	1).	
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Figure	3:	Electron	microscopic	reconstruction	of	wavelength	discrimination	circuits.		
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Renderings	of	separated	and	combined	cells	from	the	EM	reconstruction	(Takemura	et	al.,	
2015)	are	shown	in	(A)-(E).	R7,	magenta;	Dm8,	cyan;	Tm5a/b,	green.		

(A)	Cells	in	a	yellow	circuit,	from	column	E.	yR7-E,	yDm8-E,	and	Tm5a-E	are	shown.	yR7	
inhibits	both	yDm8	and	Tm5a	(repression	bars).	yDm8	makes	glutamatergic	synapses	
(probably	excitatory)	onto	Tm5a	(arrow).	Tm5a	and	Tm5b	axons	project	to	the	5th	layer	of	
the	lobula.	(B)	Cells	in	a	pale	circuit,	from	column	D.	pR7-D,	pDm8-D,	and	Tm5b-D	are	
shown.	The	connections	among	the	cells	are	the	same	as	for	the	yellow	circuit.	The	
implication	of	these	connection	patterns	is	that	R7	stimulation	should	inhibit	Tm5a/b	by	
both	direct	(histaminergic)	and	indirect	(histaminergic	inhibition	of	excitatory	Dm8	
glutamatergic	output)	pathways.		

(C)-(E)	Renderings	of	R7-Dm8-Tm5a/b	circuits.	The	insets	show	the	home	column	region	
where	most	synapses	are	located.	Black	balls,	R7	T-bars;	yellow	balls,	Dm8	T-bars.	The	
borders	of	M6,	M5,	and	M4	are	indicated.	(C)	The	column	E	circuit.	(D)	The	column	D	
circuit.	(E)	The	column	B	and	home	circuit.	This	is	a	two-home	column	circuit,	including	
pR7-B,	pR7-home,	pDm8-B/home,	Tm5b-B,	and	Tm5b-home.	The	separated	cells	for	this	
circuit	are	shown	in	Figure	3-figure	supplement	1.	See	also	associated	videos	1-6	(vertical	
and	horizontal	rotation	of	each	circuit).	For	a	comparison	of	an	ExM	image	of	a	wild-type	
yR7	and	yDm8	to	yR7-E	and	yDm8-E	from	the	EM	reconstruction,	see	Figure	5-figure	
supplement	1.		

(F)	A	section	from	column	E,	showing	a	polyadic	synapse	of	yR7-E	onto	yDm8-E	and	Tm5a-
E.	In	(F)	and	(G),	the	R7	T-bars	are	the	black	shapes	on	the	R7	membranes	where	they	are	
apposed	to	both	postsynaptic	cells.	(G)	A	section	from	column	D,	showing	a	polyadic	
synapse	of	pR7-D	onto	pDm8-D	and	Tm5b-D.		

(H)	A	model	for	UV	wavelength	discrimination	by	the	yellow	and	pale	circuits.	Short-wave	
UV	(red	bar)	would	stimulate	Rh3+	pR7	more	than	Rh4+	yR7,	and	might	therefore	produce	
more	inhibition	of	Tm5b	than	of	Tm5a.	Long-wave	UV	(blue	bar)	would	produce	more	
inhibition	of	Tm5a	than	of	Tm5b.	These	signals	could	be	read	out	by	Lo	neurons	that	
receive	Tm5a	and	Tm5b	inputs.	

_________________________________________________________________________________________________________	

DIP-γ 	and	dpr11	mutations	cause	abnormalities	in	yDm8	dendritic	arbors	

If	the	yellow	circuit	is	constructed	using	DIP-γ-Dpr11	interactions,	as	suggested	by	our	

analysis	of	the	EM	reconstruction,	one	might	expect	that	there	would	be	abnormalities	in	

yDm8	arbors	in	DIP-γ	and	dpr11	mutants.	To	assess	yDm8	arbor	morphology	in	whole-

animal	mutants,	we	surveyed	horizontal	views	of	the	neuropil	under	conditions	where	we	

genetically	converted	all	Dm8	neurons	to	yDm8	(see	below)	(Figures	4B-D).	Both	mutants	
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displayed	atypical	patterns	when	labeled	with	the	pan-Dm8	driver,	with	changes	in	the	

regular	pattern	of	sprigs	extending	upward	along	the	home	column	R7.		

	

We	generated	flipouts	in	wild-type	and	mutants	(Figure	4-figure	supplement	1A)	and	

examined	arbor	morphology	(Figures	4E-G).	The	sprig,	which	is	located	in	the	center	of	the	

arbor,	usually	has	an	expanded	region	at	the	distal	end	in	M4/M5	(see	Figures	2A-C).	There	

is	a	large	variation	in	sprig	diameter	and	height	in	both	wild-type	and	mutants.	Maximum	

sprig	diameter	was	significantly	decreased	in	both	DIP-γ	and	dpr11	mutants	compared	to	

control,	but	the	height	of	the	sprig	was	relatively	unaffected	(Figures	4H-I).	
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Figure	4:	Loss	of	DIP-γ 	or	Dpr11	alters	morphology	of	yDm8	distal	dendrites.	

	(A-D)	Horizontal	views	of	the	M6	layer	labeled	with	the	pan-Dm8	driver	in	(A)	WT,	(B)	
ssGOF,	(C)	ssGOF;	DIP-γ	-/-,	(D)	ssGOF	;	dpr11-/-.	In	ssGOF	(B-D),	all	Dm8	are	converted	to	yDm8	
(see	Figure	8).	The	pan-Dm8	driver	also	labels	lamina	neuron	L3,	which	is	seen	as	faint	
labeling	above	the	Dm8	layer.	Sprigs	(arrowheads)	are	thinner	or	are	missing	in	(C)	and	
(D)	as	compared	to	(B).	Maximum	intensity	projection;	scale	bar	10	µm.	
(E-G)	yDm8	flipouts	generated	in	(E)	wild-type,	(F)	DIP-γ	mutant	and	(G)	dpr11	mutant.	
Variations	observed	in	yDm8	morphology	for	each	genotype	shown.	Sprigs	marked	with	
arrowheads	in	panels	E-I,	E-IV,	F-III,	and	G-II.	Axons	marked	with	arrows	in	E-II,	F-III,	and	
G-I.	Panel	E-IV	is	a	2-home	column	yDm8	with	both	sprigs	marked.	Flipouts	in	wild-type	
and	DIP-γ	mutants	were	generated	with	the	yDm8	split-Gal4	driver;	dpr11	mutant	flipouts	
were	generated	with	the	pan-Dm8	driver	and	scored	as	yDm8	using	Rh4-LacZ	labeling	(red	
in	panel	G-IV;	yDm8	clones	labeled	with	asterisks).	Quantitation	of	clones	for	all	three	
genotypes	in	Figure	4-figure	supplement	1.	Maximum	intensity	projection;	scale	bar	5	µm.	
(H-I)	Maximum	sprig	diameter	is	reduced	significantly	in	both	dpr11	and	DIP-γ	mutants.	
Sprig	height	was	slightly	affected	in	DIP-γ	mutants	but	not	in	dpr11	mutants.	Graph	shows	
mean	+/-	std.	deviation	and	unpaired	Student’s	t-test	p-values.	
Sprig	diameter:		
DIP-γ	-/+	1.8+/-0.6,	DIP-γ	-/-	1.0+/-0.6,	dpr11	-/-	0.9+/-0.4,	****p<0.0001	for	both	mutants.		
Sprig	height:		
DIP-γ	-/+	5.9+/-1.3	,	DIP-γ	-/-	4.8+/-1.5,	dpr11	-/-	5.9+/-1.5,	from	left	to	right	*p=0.014,	not	
significant	(n.s.)	
	
______________________________________________________________________________________________________	
	

yDm8	arbor	morphology	in	detail	

To	obtain	high-resolution	views	of	interactions	between	yDm8	sprigs	and	R7	terminals,	we	

examined	single	cell	yDm8	clones	in	wild-type	and	DIP-γ	mutant	brains	using	expansion	

microscopy	(ExM)(Figure	5	and	associated	videos	1-4)	((Mosca	et	al.,	2017);	reviewed	by	

(Karagiannis	and	Boyden,	2018)).	The	morphology	of	the	arbor	in	M6	and	of	the	sprig	in	

M4	and	M5	can	be	visualized	in	detail	in	ExM	images	(Figure	5A).	The	sprig	is	on	a	home	

column	R7,	where	most	of	the	synapses	from	yR7	to	yDm8	are	located	(Figures	5B-C,	

Figure	5-figure	supplement	1).	In	addition	to	the	sprig,	this	yDm8	arbor	has	two	thin	

dendritic	processes	that	emerge	from	the	base	and	are	wrapped	around	neighboring	non-
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home	column	R7	terminals	(Figure	5C).	The	home	column	R7	extends	into	the	base	of	the	

sprig,	making	multiple	contacts	with	the	base	of	the	Dm8	arbor.	DIP-γ	mutant	yDm8	

neurons	have	thinner	sprigs,	in	agreement	with	our	quantitative	analysis	of	mutant	flipout	

clones	(Figures	4H,	5D;	Figure	5-figure	supplement	2B).		
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Figure	5:	yDm8	arbor	morphology	in	wild-type	and	DIP-γ 	mutant	visualized	with	
expansion	microscopy.	

yDm8	dendritic	arbors	(cyan)	visualized	with	expansion	microscopy	and	surface	rendered	
with	Imaris	software.	(A-C)	Wild-type;	(D)	DIP-γ	-/-.	Arrowheads,	sprigs;	arrow	in	(A),	axon.	
In	(B)-(D),	one	or	more	R7	terminals/axons	are	included	in	the	rendering.	Two	different	
views	of	the	same	flipout	clone	are	shown	in	panels	(B)	and	(C).	The	R7	terminals/axons	
are	semi-transparent	in	(C)	and	(D).	The	home	column	R7	located	at	the	center	of	the	arbor	
makes	extensive	contacts	with	the	sprig	as	well	as	with	the	base	of	the	dendritic	arbor	in	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


27	
	

M6	in	(B)	and	(C).	Two	thinner	dendritic	processes	positioned	on	the	edges	of	the	arbor	
(asterisks)	contact	two	non-home	column	R7	in	(C).	The	yDm8	in	the	DIP-γ	-/-	mutant	has	a	
much	thinner	sprig	as	compared	to	wild-type	(D).	See	associated	videos	1-4	(vertical	and	
horizontal	rotations)	and	Figure	5-supplemental	figure	2	for	additional	views	of	the	wild-
type	clone	in	(C)	and	the	mutant	clone	in	(D).	

_________________________________________________________________________________________________________	

	

Interaction	between	Dpr11	in	yR7	and	DIP-γ 	in	yDm8	is	required	for	yDm8	survival	

We	previously	showed	that	Dm8	cells	are	lost	in	DIP-γ	GFP/Df	animals	(Carrillo	et	al	2015).	

To	explore	this	in	detail,	we	used	CRISPR-generated	null	mutants	for	both	DIP-γ	and	dpr11	

(Xu	et	al.,	2018b)	and	determined	yDm8	and	pDm8	populations	(Figures	6A-C).	DIP-γ	GFP,	

which	has	no	detectable	protein	expression,	was	used	as	one	of	the	DIP-γ	alleles	to	allow	

identification	of	yDm8	soma.	Both	DIP-γ	and	dpr11	mutants	showed	a	~50%	decrease	in	

yDm8	cell	number	using	the	pan-Dm8	driver	and	60-65%	loss	when	determined	with	Dac	

(Figures	6A,	C).	The	loss	of	yDm8	in	DIP-γ	mutants	was	partially	rescued	by	expressing	a	

DIP-γ	transgene	using	the	DIP-γ	Gal4	driver	(Figure	6A).	To	determine	if	yDm8	loss	in	dpr11	

mutants	was	due	to	the	absence	of	Dpr11	from	the	eye	or	from	other	Dpr11-expressing	

cells	in	the	medulla,	we	performed	eye-specific	dpr11	transgenic	RNAi,	and	found	a	~40%	

reduction	in	yDm8	cell	numbers	(Figure	6C).		

	

We	also	ectopically	expressed	DIP-γ	in	PRs,	and	found	that	this	phenocopied	the	DIP-γ	and	

dpr11	loss-of-function	(LOF)	phenotypes	(Figure	6C).	This	result	suggests	that	the	presence	

of	both	Dpr11	and	its	partner	on	the	same	cells	(expression	in	cis)	prevents	Dpr11	in	yR7	

from	interacting	with	DIP-γ	in	trans	(on	yDm8).	Similar	results	were	observed	for	DIP-α	

and	Dpr10	in	the	neuromuscular	system,	where	DIP-α	is	normally	expressed	on	the	RP2	
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motoneuron	and	Dpr10	on	its	muscle	targets.	LOF	mutants	lacking	either	protein	are	

missing	specific	muscle	branches,	and	ectopic	expression	of	DIP-α	on	muscles,	or	of	Dpr10	

on	RP2,	generates	the	same	phenotypes	(Ashley	et	al.,	2019).		

	

To	assess	whether	the	decrease	in	yDm8	population	was	due	to	apoptotic	cell	death,	we	

expressed	Drosophila	inhibitor	of	apoptosis	protein	1	(DIAP)	in	DIP-γ	expressing	cells	

(Figure	6-figure	supplement	1).	DIAP	overexpression	rescued	the	loss	of	yDm8	in	DIP-γ	

mutants,	indicating	that	DIP-γ	is	required	for	cell	survival	and	that	yDm8	undergo	

apoptosis	when	it	is	absent	(Figure	6A).	Furthermore,	the	number	of	yDm8	that	survived	

when	DIAP	was	expressed	was	~45%	greater	than	the	number	of	yDm8	present	in	

controls.	It	has	been	reported	that	extensive	cell	death	occurs	in	the	medullary	cortex	in	

wild-type	during	normal	optic	lobe	development	(Togane	et	al.,	2012).	Thus,	in	addition	to	

the	yDm8	that	were	rescued	from	cell	death	caused	by	the	absence	of	DIP-γ,	DIAP	also	

rescued	yDm8	that	were	lost	due	to	normal	developmental	cell	death	(see	Discussion).	The	

fact	that	dpr11	and	DIP-γ	mutants	displayed	a	similar	extent	of	yDm8	loss	implies	that	

Dpr11	in	yR7	signals	to	yDm8	via	DIP-γ	to	ensure	their	survival,	implicating	yR7	as	a	source	

of	neurotrophic	support	for	yDm8.	Absence	of	either	molecule	compromises	the	interaction	

and	leads	to	death	of	yDm8	neurons.		

	

We	next	assessed	pDm8	populations	in	the	above	genotypes	and	found	that	in	general	they	

did	not	differ	significantly	from	controls.		Importantly,	pDm8	cell	numbers	did	not	decrease	

when	the	yDm8	population	was	increased	by	DIAP	rescue	(Figure	6B;	see	below).		
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We	also	visualized	the	M6	layer	using	the	DIP-γ	GFP	reporter,	and	found	that	morphologies	

of	the	yDm8	layer	in	the	above	genotypes	were	consistent	with	the	results	obtained	in	the	

cortex.	In	the	neuropil,	larger	gaps	were	observed	in	the	mutants,	and	fewer	and	smaller	

gaps	in	wild-type	and	rescue	genotypes	(Figures	6D-H).		

	

DIP-γ	mutants	also	displayed	a	~4.5-fold	higher	frequency	of	two-home	column	flipouts	as	

compared	to	control	(Figure	4-figure	supplement	1).	The	increase	in	two-home	column	

yDm8	may	be	a	response	strategy	in	which	the	surviving	yDm8	innervate	more	yR7	in	

order	to	compensate	for	the	loss	of	neurotrophic	support	mediated	by	DIP-γ.		
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Figure	6:	yR7	PRs	provide	neurotrophic	support	to	yDm8	neurons	through	Dpr11-
DIP-γ 	interactions.	

(A-B)	yDm8	and	pDm8	cell	numbers	were	determined	using	pan-Dm8	driver>RFP	and	DIP-
γGFP	reporter.	yDm8	neurons	express	both	RFP	and	GFP	and	pDm8	neurons	express	only	
RFP.	(C)	yDm8	cell	number	determined	using	anti-GFP	for	DIP-γGFP	reporter	and	anti-Dac.	
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(A-C)	DIP-γGFP	reporter	(indicated	in	all	graphs	as	DIP-γ	-/+)	is	an	insertion	in	the	5’	UTR	
intron	that	has	no	detectable	protein	expression.	Thus,	this	line	serves	as	a	mutant	as	well	
as	a	reporter	of	DIP-γ	transcript	expression.	Graphs	show	mean	+/-	std.	deviation	and	
unpaired	Student’s	t-test	p-values.	Complete	genotypes	in	Materials	and	Methods	(Table	2).		

(A)	Both	DIP-γ		and	dpr11	mutants	show	~50%	loss	of	yDm8	neurons,	and	this	is	rescued	in	
DIP-γ	mutants	by	inhibiting	cell	death	with	DIAP.	yDm8	cell	numbers	in	heterozygous	
controls,	DIP-γ	and	dpr11	mutants,	and	DIP-γ	and	DIAP	rescues	in	DIP-γ	mutant	are	shown.	

DIP-γ	-/+	266.4+/-17.2,	DIP-γ	-/-	134+/-14.3,	****p<0.0001;	
dpr11	-/+	control	290.7+/-21.3,	dpr11	-/-	152+/-20.4,	****p<0.0001;	
DIP-γ	-/+	control	270+/-13.03,	DIP-γ	rescue	219.2+/-20.7,	***p=0.0004;		
DIP-γ	-/-	mutant	control	135.2+/-6.5,	DIP-γ	rescue	219.2+/-20.7,	****p<0.0001;	
DIP-γ	-/+	control	270+/-13.03,	DIAP	rescue	390.8+/-8.0,	****p<0.0001;	
DIP-γ	-/-	mutant	control	135.2+/-6.5,	DIAP	rescue	390.8+/-8.0,	****p<0.0001.	
	
(B)	pDm8	cell	numbers	in	both	mutants	and	in	DIAP	rescue.		
DIP-γ	-/+	179.4+/-25.6,	DIP-γ	-/-	204.9+/-27.2,	*p=0.03;	
dpr11	-/+	control	176.5+/-29.2,	dpr11	-/-	190.2+/-15.5,	not	significant	(n.s.)	p=0.34;	
DIP-γ	-/-	204.9+/-27.2,	DIAP	yDm8	rescue	191.8+/-23.2,	not	significant	(n.s.)	p=0.32	
	
(C)	Dpr11	in	R7	is	required	for	yDm8	survival.	yDm8	cell	number	in	wild-type,	mutants,	
dpr11	eye-specific	RNAi,	and	ectopic	DIP-γ	expression	in	PRs.		
DIP-γ	-/+	318+/-9.7,	DIP-γ	-/-	110.5+/-6.1,	****p<0.0001;	
DIP-γ	-/-	110.5+/-6.1,	dpr11	-/-	129+/-15.4,	not	significant	(n.s.)	p=0.055;	
lGMR-Gal4	control	at	290C	190.3+/-15.5,	lGMR-Gal4>dpr11	RNAi	110.6+/-4.5	****p<0.0001	
lGMR-Gal4	control	217+/-18.3,	lGMR-Gal4>UAS-DIP-γ	118.3+/-5.9	****p<0.0001	
	
(D-H)	yDm8	labeling	in	the	neuropil	in	wild-type,	DIP-γ	mutant,	DIP-γ	rescue,	DIAP	yDm8	
rescue,	and	dpr11	mutant,	using	DIP-γGFP	reporter.	Large	gaps	(asterisks)	representing	
yDm8	cell	death	are	seen	in	the	M6	layer	(arrow)	in	both	DIP-γ	and	dpr11	null	mutants	(E,	
H),	whereas	wild-type,	DIP-γ	and	DIAP	rescues	showed	smaller	and	fewer	gaps	(asterisks	in	
D,	F-G).	Adult	optic	lobes	were	labeled	with	anti-GFP	for	yDm8	reporter.	
	
_______________________________________________________________________________________________________	
	
DIP-γ 	controls	yDm8	death	by	interacting	with	Dpr11	during	early	pupal	

development	

To	determine	when	the	Dpr11	and	DIP-γ	interaction	is	needed	for	yDm8	survival,	we	

examined	the	timecourse	of	yDm8	loss	in	wild-type	and	DIP-γ	mutants	starting	at	15h	after	

puparium	formation	(APF)	(Figure	7A).	In	wild	type,	the	population	of	yDm8	is	unchanged	
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between	15h	APF	and	25h	APF.	yDm8	cell	numbers	in	DIP-γ	mutants	are	similar	to	wild-

type	cell	numbers	at	15h	APF,	but	there	is	significant	cell	death	by	25h	APF.	By	45h	APF,	

the	yDm8	population	in	both	wild	type	and	mutant	had	reached	the	adult	cell	number.	DIAP	

rescue	of	the	DIP-γ	mutant	restored	the	population	in	the	adult	back	to	the	original	pool	

size	at	15h	APF	(Figure	7A).	Thus,	DIP-γ	is	required	for	suppression	of	yDm8	cell	death	

early	in	pupal	development.	Extensive	migration	of	yDm8	cells	was	observed	in	wild-type,	

and	this	migration	was	unaffected	in	the	DIP-γ	mutant	(Figures	7B-D,	and	data	not	shown).		

	

In	order	for	the	interaction	to	occur,	yR7	and	its	target	yDm8	have	to	be	in	close	proximity,	

and	Dpr11	and	DIP-γ	need	to	be	expressed.	We	found	that	dpr11	was	expressed	in	select	R7	

at	15h	APF,	suggesting	that	the	yellow	fate	of	R7	was	determined	by	that	time	(Figure	7E).	

We	next	examined	DIP-γ	expression	in	early	pupa	and	found	DIP-γ	labeling	adjacent	to	

select	R7	at	20h	APF,	indicating	that	yDm8	arbors	are	apposed	to	yR7	terminals	(Figure	

7F).	The	gaps	in	DIP-γ	labeling	are	presumed	to	be	pDm8	(Figure	7-figure	supplement	1).	

Taken	together,	our	results	are	consistent	with	a	model	in	which	selection	of	yDm8	by	yR7	

occurs	by	15h-20h	APF	via	Dpr11-DIP-γ	binding	and	thereby	ensures	survival	of	yDm8.		
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Figure	7:	Dpr11-DIP-γ 	interactions	are	required	early	in	pupal	development	to	
prevent	yDm8	cell	death.		
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(A)	yDm8	cell	death	occurs	in	DIP-γ	mutants	between	15h	and	45h	APF.	yDm8	cell	death	in	
wild-type	occurs	between	25h	and	45h	APF.	DIAP	expression	in	the	DIP-γ	mutant	rescues	
cell	number	back	to	the	original	level	at	15	APF.	yDm8	cell	number	determined	with	anti-
GFP	for	DIP-γ	GFP	reporter	and	anti-Dac.	DIP-γGFP	reporter	heterozygote	indicated	as	DIP-γ	-/+.	
Graph	shows	mean	+/-	std.	deviation	and	unpaired	Student’s	t-test	p-values.	Complete	
genotypes	in	Materials	and	Methods	(Table	2).	
	15h	APF:	DIP-γ	-/+	417.7+/-13.1,	DIP-γ	-/-	435.7+/-32.3,	not	significant	(n.s.)	p=	0.4218;	
25h	APF:	DIP-γ	-/+	421+/-	24.3,	DIP-γ	-/-	274.7+/-32.3,	**p=	0.0033;		
45h	APF:	DIP-γ	-/+	287+/-18.2,	DIP-γ	-/-	110.7+/-18.7,	***p=0.0003;		
25h	APF	DIP-γ	-/+	421+/-	24.3,	45h	APF	DIP-γ	-/+	287+/-18.2,	**p=0.0016;		
Adult:	DIP-γ	-/+	318+/-9.7,	DIP-γ	-/-	110.5+/-6.1,	****p<0.0001;	
yDm8	DIAP	rescue	442.6+/-27.2,	15h	APF	DIP-γ	-/+	417.7+/-13.1,	not	significant	(n.s.)	
p=0.20.	
	
(B-D)	yDm8	cell	bodies	migrate	during	early	pupal	development.	yDm8	cell	bodies	labeled	
with	anti-Dac	(not	shown	here)	and	anti-GFP	for	DIP-γ	GFP	reporter	are	circled	to	indicate	
position	in	the	cortex	in	wild-type	at	15h,	25h	and	45h	APF.	There	is	no	difference	in	their	
relative	positions	in	DIP-γ	mutants	as	compared	to	that	in	wild-type	(data	not	shown).		
(E)	Dpr11	is	expressed	in	select	R7	PRs	at	15h	APF	(asterisks).	dpr11GFP	reporter	labeled	
with	anti-Chp	(red)	and	anti-GFP	(green)	at	15h	APF.	Note	that	one	of	the	younger	R7	PRs	
located	on	the	right	of	the	image	also	expresses	Dpr11.	Single	confocal	slice;	scale	bar	5	µm.	
(F)	DIP-γ	is	expressed	in	yDm8	neurons	apposed	to	specific	R7	PRs	by	20h	APF	(asterisks).	
pR7	terminals	(arrowheads)	do	not	show	overlapping	DIP-γ	labeling	(see	also	Figure	7-
figure	supplement	1B-B’).	Wild-type,	labeled	at	20h	APF	with	anti-DIP-γ	(green)	and	anti-
Chp	(red).	Single	confocal	slice;	scale	bar	10	µm.	
	
____________________________________________________________________________________________________	
	
Perturbing	R7	fate	in	the	retina	alters	Dm8	fate	in	the	medulla	

Since	Dpr11	is	expressed	in	yR7	PRs,	we	next	examined	how	the	two	subtypes	of	Dm8	

neurons	respond	when	R7	fates	are	altered.	The	transcription	factor	Spineless	(Ss)	controls	

yellow	and	pale	subtype	choice	in	the	retina.	Ectopic	expression	of	ss	in	all	PRs	(ssGOF)	

induces	yellow	fate	in	all	R7	cells	and	prevents	formation	of	pR7	(Wernet	et	al.,	2006).	We	

first	determined	Dpr11	and	DIP-γ	expression	in	ssGOF.	In	contrast	to	wild-type,	where	only	

yR7	is	labeled	by	dpr11GFP,	all	R7	terminals	showed	GFP	expression	when	ss	was	mis-

expressed	(Figures	8A-B).	Thus,	Ss	expression	activates	Dpr11	along	with	Rh4	and	other	

yR7-specific	genes.	The	normal	gaps	in	DIP-γGFP	labeling	in	the	M6	layer	were	missing	in	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


35	
	

ssGOF.	When	DIP-γ	was	removed	in	the	ssGOF	background,	gaps	were	again	observed	in	the	

yDm8	layer,	indicating	that	the	M6	signal	in	ssGOF	is	indeed	due	to	DIP-γ-expressing	yDm8	

(Figure	8-figure	supplement	1A-C).	The	change	in	R7	fate	is	thus	transmitted	to	the	

downstream	circuit	in	the	medulla	via	Dpr11-DIP-γ	interactions,	resulting	in	uniform	yDm8	

labeling	in	the	M6	layer.	

	

We	determined	yDm8	and	pDm8	cell	number	in	the	above	genotypes	(Figures	8C-D).	In	

ssGOF,	we	observed	a	36%	increase	in	yDm8,	while	pDm8	cell	number	was	decreased	by	

84%.	The	increase	in	yDm8	in	ssGOF	was	dependent	on	DIP-γ,	as	absence	of	DIP-γ	in	the	ssGOF	

background	resulted	in	53%	loss	of	yDm8	neurons.	Interestingly,	pDm8	increased	

significantly,	doubling	their	cell	numbers	as	compared	to	ssGOF	alone	(Figure	8D).	Thus,	

yDm8	and	pDm8	populations	compete	with	each	other	when	R7	fate	is	altered,	as	observed	

in	ssGOF.	

	

To	assess	Dm8	subtypes	in	the	reverse	situation	where	there	are	only	pR7	in	the	eye,	we	

ectopically	expressed	the	Defective	proventriculus	(Dve)	transcription	factor,	a	repressor	

downstream	of	ss,	in	all	PRs	(Johnston	et	al.,	2011;	Nakagawa	et	al.,	2011;	Yan	et	al.,	2017).	

We	used	this	strategy	because	ss	LOF	mutations	cause	lethality	and	we	observed	no	

phenotype	with	eye-specific	ss	RNAi.	We	predicted	that	there	would	be	fewer	yDm8	

neurons	in	dveGOF,	as	there	are	no	yR7	to	provide	neurotrophic	support.	Since	the	external	

eye	morphologies	of	these	animals	were	abnormal,	we	initially	examined	the	neuropil	

layers	of	the	medulla.	Except	for	the	DIP-γGFP	labeling	in	M6,	other	layers	of	the	neuropil	

showed	similar	patterns	to	wild-type.	The	M6	layer	had	large	gaps,	similar	to	those	
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observed	in	DIP-γ	mutants,	suggesting	that	there	were	fewer	yDm8	neurons	(Figure	8-

figure	supplement	1E).	Indeed,	yDm8	cell	number	decreased	by	~60%	as	compared	to	the	

control	(Figure	8G).		

	

Sevenless	is	a	receptor	tyrosine	kinase	that	is	required	for	specification	of	R7	in	the	

developing	eye.	In	sev	mutants,	R7	is	absent,	because	the	R7	precursor	cell	becomes	a	non-

neuronal	cone	cell.	We	found	that	both	the	yDm8	and	pDm8	populations	were	reduced	in	

sev	mutants	by	>70%	as	compared	to	control	cell	numbers,	showing	that	both	classes	of	

Dm8	depend	on	R7	PRs	for	neurotrophic	support.	yDm8	cell	numbers	were	further	

reduced	when	DIP-γ	was	removed	in	the	sev	mutant	background	(Figure	8C).	This	

dependence	on	DIP-γ	likely	occurs	because	there	are	a	few	Dpr11-expressing	R7	remaining	

in	the	sev	mutant	(Figure	8-figure	supplement	1F),	although	the	allele	we	used	is	described	

as	an	amorph.	The	~50	yDm8	that	remain	in	a	sev	DIP-γ		double	mutant	may	not	require	

trophic	support	for	survival,	or	might	obtain	support	through	a	different	pathway.	

pDm8	numbers	are	slightly	increased	by	removal	of	DIP-γ	in	the	sev	mutant	background.	

This	is	probably	because	they	are	competing	with	yDm8	for	the	few	remaining	R7	PRs,	so	

that	the	loss	of	additional	yDm8	through	removal	of	DIP-γ	frees	up	those	slots	to	be	

occupied	by	pDm8.		

	

In	order	to	complete	our	analysis	of	the	consequences	of	changing	R7	fates,	we	examined	

ectopic	expression	of	Dpr11	in	the	eye	(dpr11GOF).	We	reasoned	that	since	dpr11	was	

expressed	in	all	R7	in	ssGOF	(Figure	8B),	Dpr11	overexpression	in	the	eye	should	mimic	

ssGOF.	Indeed,	the	M6	layer	showed	continuous	yDm8	labeling	with	no	pDm8	gaps,	similar	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


37	
	

to	ssGOF	(Figure	8-figure	supplement	1D).	This	was	confirmed	by	determining	yDm8	and	

pDm8	cell	numbers	in	dpr11GOF.	The	yDm8	population	increased	by	53%	over	control	when	

Dpr11	was	overexpressed	in	all	PRs,	accompanied	by	a	67%	loss	of	pDm8	(Figures	8C-D).	

Dpr11	overexpression	in	dpr11GOF	was	confirmed	by	labeling	with	Dpr11	antibody.	Dpr11	

overexpression	does	not	convert	pR7	to	the	yR7	fate,	because	R7	PRs	that	ectopically	

express	Dpr11	do	not	all	express	Rh4	(Figure	8-figure	supplement	1G-I).	

	

We	next	examined	cross-sectional	(top-down)	views	of	the	mid-pupal	medulla	in	dpr11GOF	

labeled	with	DIP-γ	and	Chp	antibodies	to	assess	the	composition	of	Dm8	columns	when	

Dpr11	is	expressed	in	all	R7	PRs.		Wild-type	controls	showed	62y:38p	columns	in	the	

medulla,	similar	to	the	65y:35p	ratio	of	yellow	and	pale	ommatidia	in	the	eye.	By	contrast,	

in	dpr11GOF	only	yellow	columns	were	observed,	indicating	that	all	pDm8	home	columns	

had	been	replaced	by	yDm8	(Figures	8E-F).	Thus~35%	of	yDm8	neurons	had	now	selected	

PRs	that	express	Dpr11	but	were	otherwise	of	the	p	subtype	as	their	home	column	R7	

(Figure	8H,	Figure	8-figure	supplement	1I).	Similar	results	were	obtained	in	ssGOF,	in	which	

pR7	PRs	are	actually	converted	to	the	y	subtype	(Figure	8-figure	supplement	1J).		

	

yDm8	do	not	mistarget	to	pR7	in	dpr11	mutants	

Since	ectopic	expression	of	Dpr11	in	all	PRs	changed	the	identities	of	home	column	Dm8,	

converting	them	all	to	yDm8	(Figures	8E-F,	H),	we	investigated	whether	there	were	defects	

in	home	column	selection	in	dpr11	mutants.	We	examined	mutants	and	heterozygous	

controls	at	44h	APF	because	Dm8	have	not	yet	contacted	neighboring	columns	at	this	stage,	

making	it	possible	to	unambiguously	assign	the	home	column	(Ting	et	al.,	2014).	y	and	p	R7	
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were	identified	using	dpr11GFP	and	Chp	antibody.	Using	the	DIP-γ	antibody	to	label	yDm8,	

we	determined	how	many	yR7	containing	columns	were	paired	with	yDm8.	In	controls,	

every	yR7	column	had	DIP-γ	labeling	adjacent	to	it.	In	dpr11	mutants,	there	was	a	

significantly	higher	percentage	of	unpaired	yR7	as	compared	to	controls	(Figure	8-figure	

supplement	2C).	However,	this	result	can	be	explained	by	the	fact	that	yDm8	die	in	dpr11	

mutants,	so	that	the	number	of	surviving	yDm8	neurons	is	insufficient	to	innervate	all	yR7.	

Thus,	the	absence	of	DIP-γ	labeling	adjacent	to	yR7	does	not	indicate	that	Dpr11	is	required	

for	home	column	selection.	We	found	no	mistargeting	errors	where	pR7	containing	

columns	labeled	only	with	Chp	were	apposed	to	yDm8	in	dpr11	mutants	(Figure	8-figure	

supplement	2A-B).	However,	pR7	may	not	be	available	as	targets	because	they	would	have	

been	selected	by	pDm8	neurons.	The	fact	that	pR7	are	occupied	by	pDm8	in	mutants	makes	

it	difficult	to	assess	whether	Dpr11-DIP-γ	interactions	are	required	for	selection	of	yDm8	as	

targets	by	yR7.	
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Figure	8:	The	representation	of	Dm8	subtypes	in	the	medulla	is	altered	by	
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manipulation	of	R7	fates	in	the	retina.	

(A-B)	Conversion	of	all	R7	PRs	to	the	yR7	fate	in	ssGOF	results	in	Dpr11	expression	in	every	
R7.	Dpr11	is	expressed	in	yR7	PRs	in	(A)	wild-type	and	(B)	ssGOF.	pR7	PRs	are	present	in	
wild-type	(asterisk)	and	absent	in	ssGOF.	Mid-pupal	optic	lobes	labeled	with	anti-GFP	
(green)	for	dpr11GFP	reporter	and	anti-Chp	(magenta)	for	all	PRs.	Maximum	intensity	
projection;	scale	bar	5	µm.		
(C-D)	yDm8	and	pDm8	cell	number	determined	using	pan-Dm8	driver>RFP	and	DIP-γGFP	
reporter.	yDm8	expresses	both	RFP	and	GFP	and	pDm8	expresses	only	RFP.	Graphs	show	
mean	+/-	std.	deviation	and	unpaired	Student’s	t-test	p-values.	Complete	genotypes	in	
Materials	and	Methods	(Table	2).	DIP-γGFP	reporter	heterozygote	indicated	as	DIP-γ		-/+.		
(C)	More	yDm8	neurons	survive	when	all	R7	PRs	are	converted	to	the	yR7	fate	(ssGOF)	or	
when	they	all	express	Dpr11	(dpr11GOF).	yDm8	neurons	are	also	lost	when	R7	PRs	are	
absent	(sev)	and/or	DIP-γ	is	mutant.		
yDm8	cell	number	in	wild-type,	ssGOF,	sev	mutant,	dpr11GOF:	
DIP-γ	-/+	266.4+/-17.2,	ssGOF	,	DIP-γ	-/+	363+/-25.3,	****p<0.0001;	
ssGOF	,	DIP-γ	-/+	363+/-25.3,	ssGOF,	DIP-γ	-/-	175.3+/-15.2,	****p<0.0001;	
DIP-γ	-/-	134+/-14.3,	ssGOF,	DIP-γ	-/-	175.3+/-15.2,	,	***p=0.0001	
sev	-/+	;;	DIP-γ	-/+	252.8+/-16.3,	sev	-/-	;;	DIP-γ	-/+	77.3+/-12.5,	****p<0.0001	
sev	-/-	;;	DIP-γ	-/+	77.3+/-12.5,	sev	-/-	;;	DIP-γ	-/-	50.5+/-7.8,	**p=0.0012	
DIP-γ	-/-	134+/-14.3,	sev	-/-	;;	DIP-γ	-/-	50.5+/-7.8,	****p<0.0001	
lGMR	Gal4	control	333+/-9.8,	lGMR	Gal4>UAS-dpr11	509.7+/-41.5,	****p<0.0001	
	
(D)	pDm8	cell	numbers	decrease	dramatically	when	R7	PRs	are	absent,	when	they	are	
converted	to	the	yR7	fate	(ssGOF),	or	when	they	all	express	Dpr11	(dpr11GOF).		
	pDm8	cell	number	in	wild-type,	ssGOF	,	sev	mutant,	Dpr11	overexpression:	
DIP-γ	-/+	179.4+/-25.6,	ssGOF	,	DIP-γ	-/+	28.7+/-4.3,	****p<0.0001;	
ssGOF	,	DIP-γ	-/+	28.7+/-4.3,	ssGOF,	DIP-γ	-/-	59.5+/-8.8,	****p<0.0001;	
DIP-γ	-/-	204.9+/-27.2,	ssGOF,	DIP-γ	-/-	59.5+/-8.8,	****p<0.0001;	
lGMR	Gal4	control	127.7+/-18.7,	lGMR	Gal4>UAS-dpr11	42.2+/-5.6,	****p<0.0001	
sev	-/+	;;	DIP-γ	-/+	187.4+/-11.0,	sev	-/-	;;	DIP-γ	-/+	39.2+/-7.0,	****p<0.0001	
sev	-/-	;;	DIP-γ	-/+	39.2+/-7.0,	sev	-/-	;;	DIP-γ	-/-	51.8+/-5.0,	**p=0.005	
	
(E-F,	H)	Dpr11	overexpression	in	the	retina	converts	all	medulla	columns	to	y	by	selecting	
for	yDm8.	Pupal	medullary	neuropil	(~45h-48hAPF)	of	(E)	lGMR-Gal4	control	and	(F)	
lGMR-Gal4>UAS-dpr11	labeled	with	anti-Chp	(red)	and	anti-DIP-γ	(green).	Cross-section	
views	of	the	medulla	shown	(E-F).	Quantitation	in	(H).	Maximum	intensity	projection;	scale	
bar	5	µm.	
(G)	Conversion	of	all	R7	PRs	to	pR7	fate	results	in	loss	of	yDm8	neurons.	yDm8	cell	number	
in	dveGOF	counted	with	anti-Dac	and	anti-GFP	for	DIP-γGFP	reporter.	
lGMR	Gal4	control	271+/-18.3,	lGMR	Gal4>UAS-Dve	110.3+/-3.8,	****p<0.0001.	Graph	
shows	mean	+/-	std.	deviation	and	unpaired	Student’s	t-test	p-values.	
(H)	Percentage	of	Dm8	home	columns	that	are	yDm8	(quantitated	from	images	like	those	
in	(E)	and	(F)).		

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


41	
	

lGMR	Gal4/+		0.62+/-0.02	(n=199),	lGMR	Gal4>UAS-dpr11	0.98+/-0.01	(n=234),	
****p<0.0001;	n	represents	total	number	of	columns	analyzed.	Graph	shows	mean	+/-	std.	
deviation	and	unpaired	Student’s	t-test	p-values.		
	
______________________________________________________________________________________________________	 	
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	DISCUSSION	

		
A	circuit	for	UV	wavelength	discrimination	in	Drosophila	is	defined	by	expression	of	a	pair	

of	cell-surface	IgSF	binding	partners,	Dpr11	and	DIP-γ.	Dpr11	is	selectively	expressed	by	

Rh4+	yR7	PRs	(Figure	1),	which	connect	to	the	yDm8	subtype	of	Dm8	amacrine	neurons	

that	express	DIP-γ.	Rh3+	pR7	connect	to	the	pDm8	subtype,	which	is	DIP-γ	negative	(Figure	

2).	yR7	and	yDm8	synapse	onto	Tm5a	neurons,	which	also	express	DIP-γ	and	project	to	the	

lobula	(Figure	3	and	associated	videos),	while	pR7	and	pDm8	synapse	onto	Tm5b.		Dpr11-

DIP-γ	interactions	are	also	involved	in	determination	of	Dm8	arbor	morphology	(Figures	4,	

5	and	associated	videos).	yDm8	neurons	are	generated	in	excess	during	development	and	

compete	for	yR7	partners.	Their	survival	is	controlled	by	neurotrophic	signaling	mediated	

by	transsynaptic	Dpr11-DIP-γ	interactions	(Figures	6,	7).	yDm8	and	pDm8	neurons	do	not	

normally	compete	for	survival	signals,	but	can	be	forced	to	do	so	by	changing	R7	subtype	

fate	(Figure	8).		

	

Control	of	R7-Dm8	connectivity	by	neurotrophic	Dpr11-DIP-γ 	signaling	

Yellow	and	pale	ommatidia	are	generated	by	a	stochastic	process	and	are	distributed	in	a	

~65y:35p	ratio	in	the	retina	(Wernet	et	al.,	2006).	Since	yDm8	and	pDm8	are	separate	

populations	(Figure	2)	and	R7	y	vs.	p	fates	are	randomly	determined,	what	mechanisms	

ensure	that	each	yDm8	has	a	yR7	partner	and	each	pDm8	has	a	pR7	partner?	The	strategy	

appears	similar	to	those	used	in	the	development	of	many	mammalian	nervous	system	

circuits,	in	that	yDm8	neurons	are	generated	in	excess	of	their	final	cell	numbers	in	adults,	
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and	those	that	are	not	selected	for	survival	by	an	appropriate	home	column	R7	partner	die	

through	apoptosis.	

	

Our	conclusions	are	summarized	in	a	model	(Figure	9).	There	are	two	subtypes	of	Dm8:	

yDm8	that	express	DIP-γ	and	pDm8	that	do	not.	yDm8	are	born	in	excess	of	the	final	cell	

numbers	that	are	present	in	the	adult	(Figure	7A).	There	are	likely	to	be	extra	pDm8	as	

well,	but	due	to	the	lack	of	a	pDm8	marker	we	were	unable	to	determine	their	cell	numbers	

in	early	pupae.	Dpr11,	the	binding	partner	of	DIP-γ,	is	expressed	exclusively	in	yR7	in	the	

retina	(Figures	1D-E),	allowing	yDm8	neurons	to	select	yR7	PRs	as	their	appropriate	

partners.	The	extra	yDm8	that	do	not	find	a	yR7	partner	undergo	cell	death	due	to	lack	of	

neurotrophic	support.	This	selection	mechanism	ensures	that	the	ratio	of	yDm8	to	pDm8	in	

the	medulla	matches	the	ratio	of	yR7	to	pR7	in	the	eye	(Figure	1H).	

		

Dpr11	and	DIP-γ	are	required	for	survival,	because	50-60%	of	yDm8	die	when	either	

molecule	is	absent	(Figures	6,	7A,	9).	If	all	R7	are	converted	to	yR7	(in	ssGOF),	or	if	they	all	

express	Dpr11,	many	more	yDm8	neurons	survive	than	in	wild-type,	showing	that	the	

numbers	of	Dpr11-expressing	R7	are	limiting	for	yDm8	survival	in	wild-type	animals	

(Figures	8C,	9).	This	seems	surprising,	because	a	wild-type	retina	should	contain	460-500	

yR7	(Posnien	et	al.,	2012),	which	is	greater	than	the	number	of	yDm8	we	count	in	early	

pupae	(Figure	7A).	However,	the	actual	yDm8	cell	numbers	may	be	larger	due	to	

incomplete	penetrance	of	the	markers,	as	discussed	in	Results.		
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yDm8	and	pDm8	populations	do	not	compete	with	each	other	in	wild-type	because	they	

have	different	R7	partners.	When	the	numbers	of	yDm8	neurons	are	increased	by	

suppressing	apoptotic	cell	death	with	DIAP	in	yDm8,	pDm8	cell	numbers	do	not	decrease	

(Figure	6B).	However,	yDm8	and	pDm8	neurons	can	be	forced	to	compete	by	changing	R7	

subtype	fate.	When	all	R7	PRs	are	converted	to	yR7,	or	when	they	all	express	Dpr11,	almost	

all	pDm8	neurons	die	(Figures	8D,	9).	Conversely,	most	yDm8	neurons	die	when	all	R7	PRs	

are	converted	to	pR7	(in	dveGOF)(Figure	8G).		

	

pDm8	neurons	are	preferentially	selected	by	pR7	PRs,	using	unknown	molecular	

mechanisms,	and	pR7	PRs	are	needed	to	ensure	pDm8	survival.	This	is	demonstrated	by	

the	fact	that	pDm8	are	unable	to	effectively	fill	vacant	yR7	slots.	For	example,	in	ssGOF,	DIP-γ	

animals,	there	are	at	least	180	yR7	slots	that	are	made	vacant	by	loss	of	yDm8,	but	the	

number	of	pDm8	neurons	only	increases	by	~30	(~2-fold)	in	this	genotype	(Figures	8C-D).		
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Figure	9:	Model	for	Dm8	selection	and	survival.	

(A)	In	wild-type,	yDm8	neurons	(red)	are	produced	in	excess	and	are	selected	by	yR7	PRs	
for	connectivity	and	survival.	pDm8	neurons	(blue)	are	also	shown	as	being	generated	in	
excess,	and	we	have	indicated	their	cell	numbers	prior	to	selection	as	being	the	same	as	
yDm8,	but	this	is	arbitrary,	since	we	do	not	know	how	many	pDm8	are	born.	Unselected	
yDm8	and	pDm8	neurons	die	in	the	absence	of	neurotrophic	support	(indicated	by	Xs).	
~30%	of	the	yDm8	neurons	present	at	15h	APF	die	in	wild-type	(Figure	7A).		
(B)	When	all	R7	PRs	are	converted	to	yR7	(in	ssGOF)	or	when	they	all	express	Dpr11,	more	
yDm8	neurons	survive	and	almost	all	pDm8	neurons	die	(Figure	8).		
(C)	In	DIP-γ	mutants,	yDm8	neurons	are	not	selected	by	yR7	PRs	and	more	of	them	die.	
~75%	of	the	yDm8	neurons	present	at	15h	APF	die	in	DIP-γ	mutants	(Figure	7A).	Similar	
results	are	observed	for	dpr11	mutants.	This	means	that	some	yR7	PRs	remain	
uninnervated	(Figure	6-figure	supplement	2).		
	
__________________________________________________________________________________________________	
	
Selection	of	yDm8	neurons	for	survival	occurs	early,	prior	to	synaptogenesis	

Dpr11	is	already	expressed	in	a	subset	of	R7	PRs	at	15h	APF,	indicating	that	yR7	fate	is	

determined	by	that	time	(Figure	7E).	DIP-γ	is	expressed	by	18h-20h	APF	in	select	Dm8	

neurons	apposed	to	Dpr11-expressing	R7	PRs	(Figure	7F;	Figure	7-figure	supplement	1A-

B).	At	this	time,	R7	growth	cones	are	positioned	in	the	incipient	layer	(Kulkarni	et	al.,	2016;	

Ting	et	al.,	2005).	This	is	consistent	with	earlier	findings	that	single-cell	Dm8	clones	contact	

home	column	R7	growth	cones	by	17h	APF	(Ting	et	al.,	2014).	Taken	together,	these	results	

indicate	that	yR7	and	yDm8	have	met	and	selected	each	other	in	the	incipient	layer	by	15h-

20h	APF.	Neurotrophic	signaling	mediated	by	Dpr11-DIP-γ	interactions	is	probably	

initiated	around	that	time,	because	cell	death	of	yDm8	in	DIP-γ	mutants	begins	to	occur	

between	15	hr	and	25	hr	APF	(Figure	7A).		

	

There	is	widespread	cell	death	in	the	medullary	cortex	as	part	of	normal	optic	lobe	

development.	This	occurs	in	two	phases,	with	the	first	phase	spanning	0h-48h	APF	and	

peaking	at	24h	APF	(Togane	et	al.,	2012).	In	wild-type,	~30%	of	the	yDm8	neurons	present	
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at	15	h	APF	die	by	45h	APF,	at	which	time	yDm8	cell	numbers	are	the	same	as	those	in	

adult.	In	DIP-γ	mutants,	~75%	are	lost	by	45h	APF.	If	apoptotic	cell	death	is	suppressed	by	

DIAP,	then	the	yDm8	population	in	adult	remains	the	same	as	at	15h	APF	(Figure	7A).	We	

suggest	that	the	yDm8	neurons	that	die	in	wild-type	are	those	that	are	in	excess	of	the	

number	that	can	be	selected	for	survival	by	Dpr11-expressing	yR7	PRs.	Since	most	yDm8	

neurons	require	DIP-γ	for	survival,	we	infer	that	the	excess	yDm8	neurons	in	wild-type	die	

because	they	lack	neurotrophic	support	mediated	by	Dpr11-DIP-γ	interactions.	However,	

we	do	not	understand	why	yDm8	neurons	begin	to	die	earlier	in	DIP-γ	mutants	than	in	

wild-type	(Figure	7A).	Perhaps	DIP-γ	not	engaged	by	Dpr11	(which	would	be	present	in	

wild-type	yDm8)	allows	cells	to	survive	longer	than	when	DIP-γ	is	absent.	These	selection	

events	are	independent	of	synaptogenesis	between	R7	and	Dm8,	which	occurs	only	after	

60h	APF.		

	

The	DIP-α-expressing	Dm4	neurons	are	also	generated	in	excess,	and	their	survival	is	

regulated	by	interactions	between	DIP-α	and	its	partners	Dprs	6	and	10,	which	are	

expressed	on	presynaptic	L3	neurons.	In	DIP-α	or	dpr6	dpr10	mutants,	about	50%	of	Dm4	

and	20%	of	Dm12	neurons	are	lost.	If	cell	death	is	blocked	in	wild-type,	the	cell	numbers	of	

Dm4	neurons	in	adults	are	increased	by	about	25%	(Xu	et	al.,	2018b).	Thus,	in	these	cases	

Dpr-DIP	interactions	play	a	similar	role	in	suppressing	cell	death	of	postsynaptic	neurons	

in	the	distal	medulla.	However,	not	all	DIP-γ	expressing	neurons	in	the	optic	lobe	require	it	

for	survival.	A	subset	of	lobula	plate	tangential	cells	(LPTCs)	also	express	DIP-γ,	and	these	

do	not	die	in	DIP-γ	mutants	(unpublished	data).	
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Our	gain-of-function	studies	show	that	when	Dpr11	is	expressed	in	all	R7,	all	pDm8	home	

columns	are	converted	to	yDm8	(Figures	8E-F,	H),	demonstrating	that	expression	of	Dpr11	

in	R7	PRs	that	are	otherwise	of	the	pale	subtype	is	sufficient	for	selection	of	yDm8.	

However,	we	were	unable	to	determine	whether	Dpr11	is	also	necessary	for	yDm8-yR7	

pairing	by	analysis	of	LOF	mutants.	We	did	not	observe	mistargeting	of	surviving	yDm8	in	

dpr11	mutants	to	pR7	columns,	most	likely	because	pR7	slots	are	occupied	by	pDm8	

neurons	(Figure	8-figure	supplement	2A-C).	Another	factor	that	could	contribute	to	

accurate	targeting	in	dpr11	mutants	is	that	there	may	be	a	second	mechanism	for	support	

(and	possibly	selection)	of	yDm8	by	R7	that	is	independent	of	Dpr11-DIP-γ	interactions.	

This	is	suggested	by	the	fact	that	~70%	of	yDm8	are	lost	in	sev	mutants,	but	only	~50%	in	

DIP-γ	and	dpr11	mutants	(Figures	8C,	6A).			

	

Effects	of	DIP-γ 	and	dpr11	mutations	on	yDm8	arbor	morphology	

A	typical	wild-type	yDm8	arbor	has	a	thick	distal	dendritic	projection	(sprig)	that	extends	

along	the	home	column	yR7	terminal,	usually	reaching	M4.	In	DIP-γ	and	dpr11	mutants,	the	

distribution	of	sprig	diameters	for	yDm8	neurons	is	shifted	toward	smaller	values	(Figure	

4H),	suggesting	that	mutant	sprigs	may	have	a	reduced	capacity	to	form	synapses	with	yR7	

in	M4	and	M5.	Synapses	that	would	have	been	in	M4	and	M5	might	then	be	found	in	the	

base	of	the	arbor	in	M6.	EM	reconstruction	data	for	columns	D	and	E	supports	this	idea.	R7	

output	synapses	(T-bars)	are	mainly	in	M4	and	M5	(on	the	sprig)	in	column	E,	which	has	a	

Dm8	with	a	thick	sprig	(Figures	2A,	3A,	inset	in	3C).	In	column	D,	whose	Dm8	has	a	very	

thin	sprig,	R7	T-bars	are	located	in	M6	(in	the	main	arbor)	(Figures	3B,	inset	in	3D).		
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The	effects	of	Dpr11	and	DIP-γ	on	yDm8	sprig	morphology	may	involve	a	different	pathway	

from	that	involved	in	cell	death.	Although	cell	death	would	have	occurred	in	the	DIP-γ	and	

dpr11	mutant	animals,	these	flipouts	were	analyzed	in	adults,	in	which	the	population	has	

stabilized	and	the	remaining	yDm8	neurons	are	not	in	the	process	of	dying.	Sprig	

morphology	defects	might	be	a	consequence	of	a	loss	of	Dpr11-DIP-γ-mediated	adhesion	

between	yR7	and	yDm8,	since	dpr11	and	DIP-γ	mutants	are	similarly	affected.		

	

We	had	earlier	reported	an	“overshoot”	phenotype	in	dpr11GFP/Df	mutants	in	which	some	

R7	terminals	had	processes	extending	beyond	M6	into	proximal	medulla	layers(Carrillo	et	

al.,	2015).	Overshoots	were	labeled	by	an	overexpressed	truncated	form	(Brp-short)	of	the	

active	zone	protein	Bruchpilot	(Brp)(Berger-Muller	et	al.,	2013).	However,	this	phenotype	

was	not	observed	in	the	dpr11CRISPR	null	mutant	when	endogenous	Brp	puncta	were	labeled	

with	the	STaR	method	(Xu	et	al.,	2018b).	To	determine	whether	this	discrepancy	was	due	

to	the	dpr11GFP/Df	genotype	or	to	the	Brp-short	marker,	we	analyzed	dpr11CRISPR	

homozygotes	using	Brp-short	and	observed	a	significant	increase	in	yR7	overshoots	as	

compared	with	the	heterozygous	control	(Figure	8-figure	supplement	2D).	However,	the	

interpretation	of	this	Brp-short	phenotype	is	unclear,	as	it	does	not	correspond	to	a	shift	in	

the	distribution	of	endogenous	Brp	puncta	into	layers	proximal	to	M6.	

	

A	circuit	for	wavelength	discrimination	defined	by	Dpr11	and	DIP-γ 	expression	

Tm5a,	Tm5b,	and	Tm5c	are	output	neurons	for	R7	and	R8	circuits.	Their	dendrites	receive	

direct	synaptic	input	from	R7,	R8,	and	Dm8,	and	their	axons	relay	signals	to	the	lobula	(Gao	

et	al.,	2008;	Karuppudurai	et	al.,	2014;	Takemura	et	al.,	2013;	Takemura	et	al.,	2015).	It	has	
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been	hypothesized	that	Tm5a/b/c	cells	are	analogous	to	vertebrate	retinal	ganglion	cells,	

and	that	true	color	vision	(intensity-independent	hue	discrimination)	involves	

interpretation	of	Tm	inputs	by	circuits	in	the	lobula.	Chi-Hon	Lee	and	his	colleagues	

developed	a	learning	paradigm	in	which	flies	discriminate	between	equiluminant	blue	and	

green	light,	which	are	differentially	sensed	by	y	(Rh6)	and	p	(Rh5)	R8.	Four	classes	of	Tm	

neurons	(Tm5	a/b/c	and	Tm20)	make	redundant	contributions	to	this	response	(Melnattur	

et	al.,	2014).		

	

The	absorption	spectra	of	Rh4	(yR7)	and	Rh3	(pR7)	extensively	overlap	(Figure	3H),	and	it	

is	unlikely	that	a	learned	color	vision	paradigm	could	be	developed	that	would	distinguish	

between	Rh4	and	Rh3	inputs.	Nevertheless,	the	existence	of	discrete	y	and	p	R7	channels	

suggests	that	the	fly	utilizes	them	to	make	discriminations	among	UV	wavelength	inputs.	

To	make	such	discriminations	would	require	that	the	y	and	p	channels	have	different	

synaptic	circuits	with	distinguishable	outputs.	Our	analysis	of	the	patterns	of	synaptic	

connections	defined	by	the	EM	reconstruction	of	the	medulla	(Takemura	et	al.,	2013;	

Takemura	et	al.,	2015)	indicates	that	yR7	and	yDm8	both	preferentially	synapse	onto	

Tm5a,	while	pR7	and	pDm8	synapse	onto	Tm5b	(Table	1).	Tm5a	expresses	DIP-γ,	while	

Tm5b	does	not	(Cosmanescu	et	al.,	2018),	so	Dpr11-DIP-γ	interactions	might	be	involved	in	

specifying	both	yR7-yDm8	and	yR7-Tm5a	connections.	Four	of	the	seven	Dm8	neurons,	

and	three	of	the	eight	R7	PRs,	also	make	a	few	synapses	onto	Tm5c	neurons,	which	are	

required	for	innate	UV	preference	(Karuppudurai	et	al.,	2014)(Table	1-table	supplement).	

There	is	no	specificity	for	y	vs.	p	in	the	connections	to	Tm5c.		
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We	visualized	yR7-yDm8-Tm5a	(yellow)	and	pR7-pDm8-Tm5b	(pale)	circuits	using	3D	

renderings	of	cells	from	the	EM	reconstruction	(Takemura	et	al.,	2015)(Figures	3A-E	and	

associated	videos).	The	yDm8-E	sprig	and	Tm5a-E	dendritic	branch	are	both	wrapped	

tightly	around	the	yR7-E	terminal,	and	most	yR7	T-bars	are	apposed	to	the	sprig	and	

branch	within	layer	M5.	Dm8	arbors	contain	both	pre-	and	postsynaptic	elements,	and	

therefore	both	receive	inputs	and	emit	outputs.	yDm8-E	T-bars	are	distributed	between	the	

sprig	and	the	main	arbor	in	M6	(Figure	3C).	Remarkably,	our	3D	renderings	of	wild-type	

yDm8	and	yR7	neurons	from	ExM	(Figure	5	and	associated	videos)	are	almost	

superimposable	on	yDm8-E	and	yR7-E	from	the	EM	reconstruction	(Figure	5-figure	

supplement	1).	This	allows	us	to	interpret	yDm8	ExM	phenotypes	in	DIP-γ	mutants	(Figure	

5,	Figure	5-figure	supplement	2)	by	reference	to	the	EM	reconstruction.		

	

R7	is	histaminergic,	and	inhibits	both	Dm8	and	Tm5a/b	(Figures	3A-B),	usually	through	

polyadic	synapses	where	a	single	R7	T-bar	is	apposed	to	both	a	Dm8	and	a	Tm5a/b	

postysnapse	(Figures	3F-G).	Dm8	is	glutamatergic,	while	Tm5a	and	Tm5b	are	cholinergic	

(Davis	et	al.,	2018;	Gao	et	al.,	2008;	Karuppudurai	et	al.,	2014).	This	suggests	that	yR7	input	

might	cause	inhibition	of	Tm5a	in	two	ways:	by	direct	inhibition	and	by	inhibiting	the	

glutamatergic	input	(probably	excitatory)	of	yDm8	onto	Tm5a.	Conversely,	pR7	input	could	

preferentially	inhibit	Tm5b	by	both	direct	and	indirect	mechanisms.	There	might	be	timing	

differences	between	direct	and	indirect	inhibition.		

	

UV	inputs	will	always	stimulate	both	y	and	pR7	channels,	because	the	Rh4	and	Rh3	

absorption	maxima	differ	by	only	20	nm.	However,	longer-wave	inputs	that	activate	Rh4	on	
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yR7	more	than	Rh3	on	pR7	might	cause	more	inhibition	of	Tm5a	than	of	Tm5b,	while	the	

reverse	would	be	true	of	shorter-wave	inputs	that	preferentially	activate	Rh3	on	pR7	

(Figure	3H).	Combining	direct	(R7!Tm5a/b)	and	indirect	(R7!Dm8!Tm5a/b)	inhibition	

of	Tm5a	and	Tm5b	outputs	might	amplify	these	effects,	depending	on	the	relative	timing	of	

R7	and	Dm8	inputs.	This	model	suggests	that	neurons	in	the	lobula	or	elsewhere	that	can	

read	the	ratio	of	Tm5a	to	Tm5b	output	mediate	UV	wavelength	discrimination.	Tm5a/b/c	

and	Tm20	as	a	group	synapse	onto	many	lobula	neuron	types,	but	the	specific	partners	of	

Tm5a	and	Tm5b	are	mostly	unknown.	Interestingly,	however,	all	Tm5a	but	only	half	of	

Tm5b	neurons	synapse	onto	LT11	lobula	projection	neurons	(Lin	et	al.,	2016).	Flies	with	

silenced	LT11	neurons	have	reduced	phototaxis	toward	blue	light	(Otsuna	et	al.,	2014).		

	

In	conclusion,	our	results	show	that	Dpr11	and	DIP-γ	expression	patterns	define	a	yR7-

yDm8-Tm5a	circuit	that	should	preferentially	respond	to	longer-wavelength	UV	input.	

Neurotrophic	signaling	triggered	by	engagement	of	Dpr11	on	yR7	by	DIP-γ	on	yDm8	helps	

to	build	this	circuit	by	ensuring	that	each	yDm8	has	a	home	column	yR7.	
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MATERIALS	AND	METHODS	

Drosophila	genetics:	

Heterozygote	controls	were	used	in	all	experiments	for	determining	cell	numbers.	DIP-γ	GFP	

reporter	(indicated	in	all	graphs	as	DIP-γ	-/+)	is	an	insertion	in	the	5’	UTR	intron	and	has	

reduced	or	no	protein	expression.	Thus,	this	line	serves	as	a	mutant	as	well	as	a	reporter	of	

DIP-γ	transcript.	

For	eye-specific	transgenic	RNAi,	we	screened	3	dpr11	RNAi	lines	by	crossing	to	a	line	

which	had	one	copy	of	dpr11	removed	to	increase	the	effectiveness	of	the	RNAi	line:	lGMR-

Gal4;	dpr11null,	DIP-γ	MI03222-GFP.	GD2343	(VDRC)	had	the	strongest	phenotype	and	was	used	

in	the	paper.	

	

Table	1:	Lines	and	sources:	

Genotype	 Source	

yw	hsFlp;	UAS>CD2,	y+>mCD8::GFP/Cyo;	

TM2/TM6B	

Gift	from	C.-H.	Lee	

Rh4-lacZ	 Bloomington	

R24F06-p65.AD	 Bloomington	

DIP-γ	Gal4-DBD	 Gift	from	C.	Desplan	

OK371-VP16AD	 Gift	from	C.-H.	Lee	

R24F06-Gal4	 Bloomington,	(Nern	et	al.,	2015)	

DIP-γ	MI03222	and	DIP-γ	MI03222	Gal4	 H.	J.	Bellen	
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DIP-γ	null	 Gift	from	L.	Zipursky,	(Xu	et	al.,	2018b)	

dpr11	MI02231	 H.	J.	Bellen	

dpr11null	 Gift	from	L.	Zipursky,	(Xu	et	al.,	2018b)	

dpr11	RNAi	GD23243	(III)	 VDRC	

UAS-DIP-γ	sh	(II)	 This	study	

UASp-DIAP	I	(II)	 Bloomington	

UAS-DIAP1-myc/TM6b	 Gift	from	L.	Zipursky,	(Xu	et	al.,	2018b)	

UAS-dveA-9B2/TM3	 Gift	from	Hideki	Nakagoshi,	(Nakagawa	et	al.,	

2011)	

lGMR-Ss	(II)	 Gift	from	C.	Desplan	

lGMR-Gal4	 Bloomington	

sev14	 Bloomington	

UAS-dpr11sh	(II)	 This	study	

Rh4-lexA::p65,	lexAop2-brp-shortcherry	 Gift	from	T.	Suzuki	

	

	 	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


55	
	

Table	2:	List	of	genotypes	in	figures	and	graphs:	

Short	genotype	 Complete	genotype	 Figures	

dpr11GFP/+	 dpr11MI02231-GFP/+	 1D	

	 Rh4	Gal4;	dpr11MI02231-GFP/10XUAS-tdTomato::myr	 1E-E’	

	 10xUAS-mCD8::RFP/+;	DIP-γ	MI03222/R24F06-Gal4	 1G-G’,	H	

yDm8	split-Gal4		 R24F06-p65.AD;	DIP-γ	MI03222Gal4.DBD		 2B,	D,	4E-F	

Pan-Dm8	driver	 R24F06-Gal4	(III)	 2C,	E,	4G	

	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

Rh4-lacZ/DIP-γ	MI03222Gal4.DBD		

2B,	D	

	

	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/+;		

Rh4LacZ/R24F06-Gal4	

2C,	E	

	 dpr11MI02231-GFP/+	 2F	

yDm8>Flp>Pan-

Dm8	FSF>GFP	

20xUAS-flp/+;	R24F06-LexA/+;		

DIP-γ	MI03222Gal4,	LexAop	FRT>stop>FRT	mCD8::GFP/+	

2G	

	 10xUAS	mCD8::RFP/+;	DIP-γ	MI03222-	GFP/R24F06-Gal4	 2H’-H”	

WT	 10xUAS-mCD8::RFP/+;	DIP-γ	MI03222-GFP/R24F06Gal4	 4A	

WT	 lGMR-ss/10xUAS-mCD8::RFP;		

DIP-γ	MI03222-GFP/R24F06Gal4	

4B	

DIP-γ	-/-	 lGMR-ss/10xUAS-mCD8::RFP;		

DIP-γ	MI03222-GFP/R24F06Gal4,	DIP-γ	null	

4C	

ssGOF;	dpr11	-/-	 lGMR-ss/10xUAS-mCD8::RFP;		

R24F06-Gal4,	dpr11null/dpr11null,	DIP-γ	MI03222-GFP	

4D	

DIP-γ	-/+	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

Rh4-lacZ/DIP-γ	MI03222Gal4.DBD	

4E,	H-I	

DIP-γ	-/-	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

DIP-γ	null/DIP-γ	MI03222Gal4.DBD	

4F,	H-I	

dpr11	-/-	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/Rh4LacZ;		

R24F06-Gal4,	dpr11null/	dpr11null	

4G-I	

WT	 yw	hsflp/+;		 5A-C	&	Videos	
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UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

Rh4-lacZ/DIP-γ	MI03222Gal4.DBD	

1-2	

DIP-γ	-/-	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

DIP-γ	null/DIP-γ	MI03222Gal4.DBD	

5D	&	Videos	3-

4	

DIP-γ	-/+	 10xUAS-mCD8::RFP/+;	R24F06-Gal4/	DIP-γ	MI03222-GFP	 6A-B,	D	

DIP-γ	-/-	 10xUAS-mCD8::RFP/+;		

R24F06-Gal4,	DIP-γ	null/DIP-γ	MI03222-GFP	

6A-B	

dpr11	-/+	control	 10xUAS-mCD8::RFP/+;		

R24F06-Gal4,	dpr11null/DIP-γ	MI03222-GFP	

6A-B	

dpr11	-/-	 10xUAS-mCD8::RFP/+;		

R24F06-Gal4,	dpr11null/	dpr11null,	DIP-γ	MI03222-GFP	

6A-B,	H	

DIP-γ	-/+	control	 R24F06-LexA/+;		

13xLexAop-tdTomato::myr,	DIP-γ	MI03222-GFP	/+	

6A-B	

DIP-γ	-/-	control	 R24F06-LexA/+;	DIP-γ	MI03222	Gal4/	

13xLexAop-tdTomato::myr,	DIP-γ	MI03222-GFP	

6A-B,	E	

DIP-γ	rescue	 UAS-DIP-γ	sh/R24F06-LexA;	DIP-γ	MI03222	Gal4/	

13xLexAop-tdTomato::myr,	DIP-γ	MI03222-GFP	

6A-B,	F	

yDm8	DIAP	rescue	 UASp-DIAP/R24F06-LexA;	DIP-γ	MI03222	Gal4/		

13xLexAop-tdTomato::myr,	DIP-γ	MI03222-GFP	

6A-B,	G	

DIP-γ	-/+	 DIP-γ	MI03222-GFP/+	 6C	

DIP-γ	-/-	 DIP-γ	MI03222-GFP/	DIP-γ	null	 6C	

dpr11	-/-	 dpr11null/dpr11null,	DIP-γ	MI03222-GFP	 6C	

	 	 	

lGMR	Gal4	control		 lGMR-Gal4/+;	dpr11null,	DIP-γ	MI03222-GFP/+	@29deg	 6C	

lGMR	Gal4/dpr11	

RNAi	

lGMR-Gal4/+;	dpr11null,	DIP-γ	MI03222-GFP/	dpr11	RNAi	

GD23243	(III)	@29deg	

6C	

lGMR	Gal4/+	 lGMR-Gal4/+;	DIP-γ	MI03222-GFP/+		 6C	

lGMR	Gal4/						

UAS-DIP-γ	

lGMR-Gal4/UAS-DIP-γ;	DIP-γ	MI03222-GFP/+		 6C	
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DIP-γ	-/+	 DIP-γ	MI03222-GFP/+	 7A,	B-D	

DIP-γ	-/-	 DIP-γ	MI03222-GFP/	DIP-γ	null	 7A	

	 dpr11MI02231-GFP	 7E	

	 WT	control	 7F	

WT	 dpr11MI02231-GFP/+	 8A	

ssGOF	 lGMR-ss/+;	dpr11MI02231-GFP/+	 8B	
	 	 	

	 	 	

	 	 	
	 	 	

DIP-γ	-/+	 10xUAS-mCD8::RFP/+;	R24F06-Gal4/	DIP-γ	MI03222-GFP	 8C-D	

LGMR>ss;	DIP-γ	-/+	 10xUAS-mCD8::RFP/	lGMR-ss;		

DIP-γ	MI03222-GFP/	R24F06-Gal4	

8C-D	

LGMR>ss;	DIP-γ	-/-	 10xUAS-mCD8::RFP/lGMR-ss;		

DIP-γ	MI03222-GFP/R24F06-Gal4,	DIP-γ	null	

8C-D	

DIP-γ	-/-	 10xUAS-mCD8::RFP/+;		

DIP-γ	MI03222-GFP/R24F06-Gal4,	DIP-γ	null	

8C-D	

sev	-/+;;	DIP-γ	-/+	 sev14/+;	;	R24F06-Gal4/	UAS-mCD8::RFP,	DIP-γ	MI03222-GFP	 8C-D	

sev	-/-;;	DIP-γ	-/+	 sev14/sev14;	;		

R24F06-Gal4/	UAS-mCD8::RFP,	DIP-γ	MI03222-GFP	

8C-D	

sev	-/-;;	DIP-γ	-/-	 sev14/sev14;	;		

R24F06-Gal4,	DIP-γ	null/	UAS-mCD8::RFP,	DIP-γ	MI03222-GFP	

8C-D	

lGMR	Gal4	control	 R24F06-LexA/+;		

13xLexAop-tdTomato::myr,	DIP-γ	MI03222-GFP/	lGMR-Gal4	

8C-D	

lGMR	Gal4>		

UAS-dpr11	

UAS-Dpr11-sh/	R24F06-LexA;		

13xLexAop-tdTomato::myr,	DIP-γ	MI03222-GFP/	lGMR-Gal4	

8C-D	

WT	 lGMR-	Gal4/+	 8E		

dpr11GOF	 lGMR-Gal4/UAS-dpr11sh	 8F	

lGMR	Gal4	control	 lGMR-Gal4/+;	DIP-γ	MI03222-GFP/+	 8G	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


58	
	

lGMR	Gal4>	

UAS-Dve	

lGMR-Gal4/+;	DIP-γ	MI03222-GFP/	UAS-dveA-9B2	 8G	

lGMR	Gal4	 lGMR-	Gal4/+	 8H	

lGMR	Gal4>		

UAS-dpr11	

lGMR-Gal4/UAS-dpr11sh	 8H	

	

	

	

Table	3:	List	of	genotypes	in	Supplemental	figures	and	graphs:	

Short	genotype	 Complete	genotype	 Supplemental	figures	

yDm8	split-Gal4	

driver	

yw	hsflp/+;		

UAS>CD2,	y+>mCD8::GFP/	R24F06-p65.AD;		

Rh4-lacZ/DIP-γ	MI03222Gal4.DBD		

Figure	2-figure	

supplement	1A	

Pan-Dm8	driver	 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/+;	

Rh4LacZ/R24F06-Gal4	

Figure	2-figure	

supplement	1A	

yDm8>Flp>Pan-

Dm8	FSF>GFP	

20xUAS-flp/+;	R24F06-LexA/+;		

DIP-γ	MI03222Gal4,	LexAop	FRT>stop>FRT	

mCD8::GFP/+	

Figure	2-figure	

supplement	1B	

	 yw	hsflp/+;		

UAS>CD2,	y+>mCD8::GFP/OK371	dVP16.AD;		

Rh4	LacZ/DIP-γ	MI03222Gal4.DBD		

Figure	2-figure	

supplement	1C-C’	

WT:		

Pan-Dm8	driver	

yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/+;	

Rh4LacZ/	R24F06-Gal4	

Figure	4-figure	

supplement	1A	

WT:		

yDm8	split-Gal4	

driver	

yw	hsflp/+;		

UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

Rh4-lacZ/DIP-γ	MI03222Gal4.DBD	

Figure	4-figure	

supplement	1A	

	

DIP-γ	-/-	:		

yDm8	split	-Gal4	

driver	

yw	hsflp/+;		

UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

DIP-γ	null/DIP-γ	MI03222Gal4.DBD	

Figure	4-figure	

supplement	1A	

	

dpr11	-/-	:		 yw	hsflp/+;	UAS>CD2,	y+>mCD8::GFP/Rh4LacZ;		 Figure	4-figure	
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Pan-Dm8	driver	 R24F06-Gal4,	dpr11null/	dpr11null	 supplement	1A	

WT	 yw	hsflp/+;		

UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

Rh4-lacZ/DIP-γ	MI03222Gal4.DBD	

Figure	5-figure	

supplement	1A,		

Figure	5-figure	

supplement	2A	

DIP-γ	-/-	 yw	hsflp/+;		

UAS>CD2,	y+>mCD8::GFP/R24F06-p65.AD;		

DIP-γ	null/DIP-γ	MI03222Gal4.DBD	

Figure	5-figure	

supplement	2B	

DIP-γ	GFP,	DIP-γ	

Gal4>UAS-DIAPmyc	

UAS-diap1.myc,	DIP-γ	MI03222-GFP/		

DIP-γ	MI03222	Gal4	

Figure	6-figure	

supplement	1A	

	 DIP-γ	MI03222-GFP/+	 Figure	7-figure	

supplement	1A-A’	

	 WT	control	 Figure	7-figure	

supplement	1B-B’	

	 dpr11MI02231-GFP/+		 Figure	7-figure	

supplement	1C	

ssGOF	 lGMR-ss/+;	DIP-γ	MI03222-GFP	 Figure	8-figure	

supplement	1A	

ssGOF;	DIP-γ	-/-	 lGMR-ss/+;	DIP-γ	MI03222-GFP/DIP-γ	null	 Figure	8-figure	

supplement	1B	

WT		 lGMR-Gal4/+;	DIP-γ	MI03222-GFP/+	 Figure	8-figure	

supplement	1C	

dpr11GOF	 lGMR-Gal4/UAS-dpr11sh;	DIP-γ	MI03222-GFP/+	 Figure	8-figure	

supplement	1D	

lGMR-Gal4>UAS-

Dve	

lGMR-Gal4/+;	DIP-γ	MI03222-GFP/	UAS-dveA-9B2	 Figure	8-figure	

supplement	1E	

sev	-/-	
sev14/sev14;;	R24F06Gal4/DIPgMiMIC,	UAS-

mCD8RFP	

Figure	8-figure	

supplement	1F	

WT	 lGMR	Gal4/+	 Figure	8-figure	

supplement	1G	
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Generation	of	UAS-transgenic	flies	

cDNA	encoding	Dpr11	and	DIP-γ	were	cloned	from	pOT2	GH22307	for	Dpr11	and	pOT2	

GH08175	for	DIP-γ	into	pUAST	attB	vector	using	standard	molecular	biology	techniques.	5’	

UTRs	for	both	genes	contained	many	upstream	ATG	codons;	we	made	deletions	of	the	5’	

UTRs	so	that	the	ATGs	of	the	proteins	were	the	first	ATGs	in	the	mRNAs,	in	order	to	

increase	expression	of	the	transgenes	(sequences	available	on	request).	Transgenes	were	

lGMR-Gal4>UAS-

dpr11	

lGMR	Gal4/+;	UAS-dpr11sh	 Figure	8-figure	

supplement	1H	

dpr11GOF	
lGMR	Gal4/+;	UAS-dpr11sh	 Figure	8-figure	

supplement	1I	

ssGOF	 lGMR-ss/+	 Figure	8-figure	

supplement	1J	

WT	 dpr11MI02231-GFP/+	 Figure	8-figure	

supplement	2A-A’	

dpr11	-/-	 dpr11MI02231-GFP/	dpr11null	 Figure	8-figure	

supplement	2B-B’	

dpr11	+/-		 dpr11MI02231-GFP/+	 Figure	8-figure	

supplement	2C	

dpr11	-/-	 dpr11MI02231-GFP/	dpr11null	 Figure	8-figure	

supplement	2C	

dpr11	+/-	 Rh4-lexA::p65,	lexAop2-brp-shortcherry/+;	

dpr11null/+		

Figure	8-figure	

supplement	2D	

dpr11	-/-	 Rh4-lexA::p65,	lexAop2-brp-shortcherry/+;	

dpr11null/dpr11null			

Figure	8-figure	

supplement	2D	
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injected	into	embryos	(Rainbow	transgenics).	UAS-Dpr11	and	UAS-DIP-γ	both	used	the	

attP40	(2L)	landing	site.		

Antibodies	

The	primary	antibodies	used	were	as	follows:	anti-DIP-γ	(guinea	pig,	1:200)	and	anti-Dpr11	

(rabbit,	1:150)	were	gifts	from	C.	Desplan.	Anti-Pros	MR1A	(mouse	1:4),	anti-Elav	7E8A10	

(rat,	1:10),	anti-Dac	2-3	(mouse	1:50),	anti-chaoptin	24B10	(mouse	1:20)	were	obtained	

from	Developmental	Studies	Hybridoma	Bank	(University	of	Iowa,	IA).	Commercial	

antibodies	were	used	as	follows:	Rabbit	anti-RFP	(Rockland,	1:500),	rabbit	anti-GFP	

(Thermo	fisher	Scientific,	1:500),	chicken	anti-GFP	(Aves	labs,	1:500),	mouse	anti-myc	

9E10	(Abcam,	1:500)	and	chicken	anti-beta-galactosidase	(Abcam,	1:1000).	Secondary	

antibodies	were	obtained	from	Thermo-fisher	Scientific	and	used	at	1:500.		

Immunohistochemistry	

Eclosed	flies	(less	than	3-days	old)	were	dissected	in	phosphate	buffer	saline	(PBS)	and	

fixed	in	4%	paraformaldehyde	in	PBS	with	0.2%	Triton-X-100	(PBT)	for	20	min	at	room	

temperature.	Brains	were	washed	overnight	in	PBT,	followed	by	a	two-day	incubation	at	

40C	with	primary	antibody	that	was	diluted	in	blocking	buffer	(5%	normal	goat	serum	in	

PBT).	Samples	were	then	incubated	with	secondary	antibody	(similarly	diluted	in	blocking	

buffer)	for	two-days,	followed	by	washing	with	PBT	and	PBS	and	stored	in	Vectashield.		

For	single	cell	flipouts,	brains	were	given	heat-shock	at	50h	APF	for	10-20	min	at	370C	and	

1-day	eclosed	flies	were	dissected	for	staining	as	above.		
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For	cell	counts	and	column	analyses,	optic	lobes	were	separated	from	the	central	brain	and	

mounted	top-down.	Confocal	images	were	acquired	on	Zeiss	LSM800	or	LSM700	

microscopes	with	a	40xobjective.	For	cell	counts	and	single-cell	flipouts,	optic	lobes	were	

imaged	with	1.5µm	and	0.8	µm	z-sections,	respectively.	Single	slices	or	maximum	intensity	

projections	were	exported	with	Zen	software	(Zeiss)	for	image	processing.		

Image	processing	

Images	were	processed	with	Adobe	Photoshop.	

Quantitation	and	Statistics	

Cell	numbers	were	determined	blind	to	genotype	using	Zen	software	to	do	manual	counts.	

For	all	data	(cell	soma,	columns	and	Brp	overshoots),	only	1	optic	lobe	per	animal	was	used	

for	counts	and	statistics.	P-value	was	determined	using	Student’s	unpaired	t-test	from	

Graphpad	Prism.	All	data	reported	in	graphs	are	mean	+/-	standard	deviation.		

yDm8	sprig	parameters	were	measured	using	ImageJ	software.	To	obtain	measurement	of	

the	widest	point	of	a	sprig,	a	slice	at	which	the	image	was	most	in	focus	was	selected.		The	

height	was	measured	from	the	most	distal	point	of	the	sprig	to	its	most	proximal	point	

before	the	processes	of	the	sprig	connected	back	to	the	dendritic	base.		The	Brp	overshoots	

were	analyzed	blind	using	ImageJ	software,	by	an	individual	unrelated	to	that	experiment.		

ExM	method		

Single	cell	flipouts	were	processed	for	expansion	microscopy	after	immunohistochemistry	

(and	confirming	the	presence	of	flipouts)	according	to	a	protocol	from	Tim	Mosca	,	based	

on	(Mosca	et	al.,	2017).	Briefly,	labeled	brains	were	washed	in	50%	PBT-PBS	mixture	
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before	proceeding	with	steps	for	anchoring	proteins	to	the	sodium	acrylate	matrix.	Gelling	

chambers	were	made	on	coated	slides	with	No.1	coverslips	as	bridge	and	brains	were	

embedded	in	sodium	acrylate	gel.	After	incubation	for	2	hours	at	370C,	the	samples	were	

excised	from	the	solidified	gel	and	processed	for	digestion	with	proteinase	K	in	6-well	

plates.	Gel	fragments	were	expanded	by	replacing	the	digestion	buffer	with	several	washes	

of	water.	Finally,	in	preparation	for	confocal	imaging,	the	gel	fragments	containing	the	

expanded	transparent	brains	were	placed	on	a	24mm	x	50mm	No.1.5	coverslip	that	was	

coated	with	poly-l-lysine.	Preps	were	always	covered	in	water	to	make	sure	they	did	not	

dry	out	during	imaging.	Expanded	brains	were	imaged	on	Zeiss	LSM800	with	40x	Objective	

1.1	NA.		

3D	reconstruction	of	ExM	samples	

ExM	images	were	processed	for	3D	reconstruction	using	Imaris	software	(Bitplane).	Using	

surface	rendering	and	fluorescence	thresholding,	we	were	able	to	obtain	an	accurate	3D	

structure	of	a	yDm8	in	wild-type	and	DIP-γ	mutant.	Each	channel	was	recreated	by	adding	

an	additional	surface.	The	threshold	for	new	surface	detection	was	set	as	needed	per	image	

minimizing	the	addition	of	surface	fragments	not	present	in	the	original	image.	Each	new	

surface	was	segmented	in	order	to	isolate	the	appropriate	region	of	interest.	Video	

recordings	were	captured	at	10	frames	per	second	for	a	total	of	300	frames.	
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VIDEOS	

Figure	3	videos:	

1.	Horizontal	rotation	of	column	E	yellow	circuit	

Colors	as	in	Figure	8	

	

2.	Vertical	rotation	of	column	E	yellow	circuit	

	

3.	Horizontal	rotation	of	column	D	pale	circuit	

	

4.	Vertical	rotation	of	column	D	pale	circuit	

	

5.	Horizontal	rotation	of	column	B/home	pale	circuit	

	

6.	Vertical	rotation	of	column	B/home	pale	circuit	

		
Figure	5	videos:	
	
1.	Horizontal	rotation	of	an	expanded	yDm8	in	wild-type	
Horizontal	rotation	of	a	yDm8	(cyan)	with	Chp	labeled	R7	PRs	(magenta).	A	single	yDm8	
wild-type	clone	was	expanded	and	surface	rendered	with	Imaris	software.	Note	that	in	
addition	to	the	major	dendritic	process	(sprig)	wrapping	around	the	home	column	R7,	two	
thinner	dendritic	processes	extend	distally	along	other	R7.	
	
2.	Vertical	rotation	of	an	expanded	yDm8	in	wild-type	
Vertical	rotation	of	the	same	yDm8	clone.	
	
3.	Horizontal	rotation	of	an	expanded	yDm8	in	DIP-γ 	mutant	
Horizontal	rotation	of	a	yDm8	(cyan)	and	a	Chp	labeled	home	column	yR7	(magenta).	A	
single	yDm8	DIP-γ	mutant	clone	was	expanded	and	surface	rendered	with	Imaris	software.	
The	thin	process	that	is	not	in	contact	with	the	R7	is	the	yDm8	axon.	
	
4.	Vertical	rotation	of	an	expanded	yDm8	in	DIP-γ 	mutant	
Vertical	rotation	of	the	same	mutant	yDm8	clone.	
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Figure	2-figure	supplement	1:	Quantitation	of	yDm8	and	pDm8	flipout	clones.	

	(A)	Quantitation	of	yDm8	and	pDm8	flipout	clones	in	wild-type:	
Pan-Dm8	driver:	R24F06-Gal4	(Nern	et	al.,	2015).	
yDm8	split-Gal4	driver:	R24F06-p65.AD;	DIP-γ-Gal4-DBD	(This	study).	
(B)	yDm8	and	pDm8	populations	have	independent	origins.	Merged	panel	of	Figure	2G.	The	
dendritic	arbors	of	yDm8	neurons	are	labeled	in	flies	carrying	DIP-γ	Gal4>Flp	and	pan-
Dm8-LexA>LexAop-FRT-stop-FRT>GFP	transgenes.	pDm8	that	are	not	labeled	appear	as	
gaps	in	the	M6	layer	(arrow),	similar	to	those	seen	when	yDm8	neurons	only	are	labeled	by	
DIP-γGFP	(Figure	2H’).	Adult	optic	lobes	were	labeled	with	anti-GFP	(green)	and	anti-Chp	
(blue).	Maximum	intensity	projection;	scale	bar	10	µm.	
(C-C’)	Horizontal	view	of	a	dense	flipout	showing	3	yDm8	clones	(asterisks)	with	yR7	home	
columns	labeled	with	Rh4-LacZ	(red)	and	Chp	(blue).	Note	the	absence	of	sprig	labeling	on	
a	pR7	column	labeled	with	Chp	only	(blue).	Maximum	intensity	projection;	scale	bar	5	µm.	
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Table	1-table	supplement	
A	table	listing	non-home	column	R7	synapses,	and	R7/Dm8	synapses	with	Tm5c	and	Dm9,	
in	addition	to	the	information	in	Table	1.	Column	2	indicates	the	identities	of	the	input	
synapses	from	R7	onto	each	Dm8.	The	reconstructed	volume	is	unlikely	to	cover	the	entire	
arbor	of	these	Dm8	neurons,	since	each	Dm8	can	contact	13-16	R7	(Gao	et	al.,	2008).	
However,	column	2	shows	that	within	the	reconstructed	columns	there	is	no	apparent	
specificity	in	synaptic	connectivity	between	y	and	p	R7	and	Dm8	neurons	outside	of	their	
home	columns.	For	example,	pDm8-B/home	receives	synapses	from	4	non-home	column	
R7,	at	least	2	of	which	are	yR7,	while	yDm8-A	receives	synapses	from	2	non-home	column	
pR7	and	a	yR7.	Even	the	Dm8	at	the	center	of	the	reconstruction	(Dm8-B/home)	only	
receives	synapses	from	4	non-home	column	R7	PRs,	so	many	Dm8	contacts	with	R7	
columns	may	not	be	associated	with	input	synapses	from	R7.	Also	note	that	(Karuppudurai	
et	al.,	2014)	found	that	Tm5a	dendrites	specifically	associate	with	yR7	axons,	but	they	
stated	that	Tm5b	dendrites	have	no	specificity	for	association	with	y	vs.	p	R7	axons.	Our	
analysis	of	the	EM	reconstruction,	however,	shows	that	all	3	pR7	PRs	synapse	only	onto	
Tm5b	and	not	Tm5a.	The	conclusion	of	(Karuppudurai	et	al.,	2014)	likely	arises	from	the	
fact	that	Tm5b	usually	has	2	distal	dendritic	projections.	One	of	these	always	arborizes	
with	a	pR7	axon	and	receives	the	pR7	input.	The	other	one	can	arborize	with	either	a	y	or	a	
p	R7,	but	does	not	receive	yR7	input,	at	least	not	for	this	set	of	columns.	Four	of	the	7	Dm8,	
and	3	of	the	8	R7	PRs,	also	have	synapses	onto	Tm5c	neurons.	There	is	no	specificity	for	y	
vs.	p	in	the	connections	to	Tm5c.	Both	R7	classes	have	input	and	output	synapses	with	
Dm9,	and	both	classes	of	Dm8	have	output	synapses	onto	Dm9.		
	
__________________________________________________________________________________________________	
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Figure	3-figure	supplement	1:	
Separated	cell	profiles	for	the	column	B/home	two-home	column	circuit.	
	

_______________________________________________________________________________________________	
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Figure	4-figure	supplement	1:	Frequency	of	two-home	column	yDm8	clones	is	
increased	in	DIP-γ 	mutants.		

(A):	The	percentage	of	two-home	column	yDm8	clones	in	DIP-γ	-/-	mutants	is	4.5-fold	higher	
than	in	wild-type.	Quantitation	of	flipout	clones	in	wild-type,	DIP-γ	and	dpr11	mutants	
shown.	Flipouts	were	generated	with	either	pan-Dm8	driver	R24F06-Gal4	or	the	yDm8	
split-Gal4	driver	R24F06-p65.AD;	DIP-γ-Gal4-DBD.	
	
_______________________________________________________________________________________________	
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Figure	5-figure	supplement	1:		

A	comparison	of	the	ExM	rendering	of	the	wild-type	yDm8	and	yR7	shown	in	Figure	5B,	
and	the	EM	reconstruction	of	yDm8-E	and	yR7-E	shown	in	Figure	2A.	yDm8,	cyan;	yR7,	
magenta.	Black	balls	indicate	yR7	T-bars.	Based	on	this	comparison,	we	can	infer	that	there	
are	likely	to	be	many	R7-Dm8	synapses	on	the	sprig	in	(A).	
	 	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


72	
	

	
	

Figure	5-figure	supplement	2:	
Other	views	of	expanded	yDm8	in	(A)	wild-type	and	(B)	DIP-γ	-/-.	(A)	The	wild-type	
rendering	is	the	same	column	as	in	Figure	5C,	but	with	only	the	home	column	yR7	included.	
This	allows	clearer	visualization	of	the	other	two	dendritic	projections	(asterisks).	(B)	The	
mutant	rendering	is	without	the	R7,	allowing	clearer	visualization	of	sprig	morphology.		
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Figure	6-figure	supplement	1:	DIAP	localizes	to	DIP-γ 	expressing	cells.	

DIAP1	tagged	with	myc	(red)	driven	with	DIP-γ	Gal4	shows	co-localization	of	DIAP1	and	
DIP-γ	GFP	reporter	(green).	Adult	optic	lobe	labeled	with	anti-myc	(red)	and	anti-GFP	
(green).	Single	section.	Scale	bar	20	µm.	
	

_________________________________________________________________________________________________________	
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Figure	7-figure	supplement	1:	Dpr11	and	DIP-γ 	are	expressed	in	yR7	and	yDm8,	
respectively,	around	the	time	yR7	selects	yDm8	for	survival.		

(A-A’)	DIP-γ	is	expressed	in	yDm8	processes	overlapping	select	R7	terminals	by	18h	APF.	
DIP-γGFP	reporter	and	DIP-γ	antibody	show	the	same	pattern	in	the	neuropil.	Three	R7	PRs	
with	anti-GFP	and	anti-DIP-γ	labeling	are	indicated	by	asterisks.	There	are	gaps	in	DIP-γ	
labeling	in	the	R7	incipient	layer	(one	such	gap	covering	two	R7	terminals	indicated	by	two	
arrowheads).	DIP-γGFP	reporter	labeled	with	anti-GFP	(green),	anti-DIP-γ	(blue)	and	anti-
Chp	(red).	(A’)	is	without	the	Chp	labeling,	for	clearer	visualization	of	the	gaps.	
(B-B’)	(B)	is	the	same	merged	image	seen	in	Figure	7F.	(B’)	shows	the	DIP-γ	channel	only	
for	this	image,	and	reveals	gaps	in	DIP-γ	labeling,	implying	that	pDm8	are	apposed	to	pR7	
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within	the	gaps	(arrowheads).	DIP-γ	labeled	yDm8	processes	indicated	by	asterisks.	Wild-
type	labeled	at	20h	APF	with	anti-DIP-γ	(green)	and	anti-Chp	(red).	
(C)	dpr11GFP	expression	at	26h-28h	APF	labels	yR7	but	not	pR7.	dpr11GFP	reporter	labeled	
with	anti-Chp	(red)	and	anti-GFP	(green).	R7	terminals		unlabeled	by	GFP	are	pR7	(red).		
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Figure	8-figure	supplement	1:	Changing	R7	fate	or	expressing	Dpr11	affects	yDm8	
and	pDm8	survival.	

(A-D)	Conversion	of	all	R7	PRs	to	yR7	fate	in	ssGOF	results	in	loss	of	pDm8	arbors.		
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(A)	ssGOF;	DIP-γ	-/+	(B)	ssGOF;	DIP-γ	-/-	(C)	Wild-type	control	(D)	lGMR>UAS-dpr11	(dpr11GOF).	
DIP-γ	GFP	reporter	in	M6	layer	(arrow)	is	shown	for	all	panels.	Gaps	representing	pDm8	
arbors	are	present	in	wild-type	control	(C)	but	absent	in	ssGOF	(A),	where	pR7	PRs	have	
been	replaced	by	yR7	PRs.	Ectopic	expression	of	Dpr11	in	all	PRs	mimics	ssGOF	(compare	
panels	A	and	D).		
(E)	yDm8	arbors	are	lost	when	yR7	are	converted	to	pR7	by	expressing	Dve	in	all	PR.		
There	are	large	gaps	(arrowheads)	in	yDm8	labeling	in	layer	M6	of	the	neuropil	indicating	
extensive	yDm8	cell	death	(compare	to	control	(C),	which	has	only	small	gaps).	yDm8	
arbors	in	M6	were	examined	with	DIP-γGFP	reporter	in	lGMR-Gal4>UAS-Dve.	The	other	
layers	in	the	distal	medulla	(M3)	and	in	the	proximal	medulla	that	label	with	the	reporter	
are	unaffected	in	dveGOF	(arrows	in	(E);	compare	to	those	layers	in	(C)).	(A)-(E)	single	
confocal	slices;	all	scale	bars	are	10	µm.	
(F)	Some	R7	PRs	remain	in	a	sev	“null”	mutant.	A	single	confocal	slice	of	a	sev14/sev14	
(putative	amorphic	mutant;	see	Flybase)	adult,	labeled	with	anti-Chp.	There	are	two	R7	
axons	that	project	to	M6	visible	in	this	slice	(arrows).	Scale	bar,	10	µm.	
(G-H)	Overexpressed	Dpr11	can	be	detected	on	R7	terminals	in	lGMR-Gal4>UAS-dpr11.	
(G)	lGMR-Gal4	control	(H)	lGMR-Gal4>UAS-dpr11.	Pupal	optic	lobes	(~43h	APF)	were	
labeled	with	anti-Dpr11	(green)	and	anti-Chp	(magenta).	Note	distinct	Dpr11	labeling	
(bracket)	of	R7	axons/terminals	in	(H),	and	its	absence	in	(G).	This	antibody	is	weak	and	
shows	no	labeling	of	specific	neurons	in	wild-type.	Maximum	intensity	projection;	scale	bar	
5	µm.	
(I)	Expression	of	Dpr11	in	pR7	PRs	does	not	convert	them	to	the	y	fate.	R7	terminals	in	
dpr11GOF	adult	labeled	with	Rh4-lacZ	and	Chp.	Note	that	4	of	the	R7	terminals	are	labeled	
only	by	Chp	and	are	therefore	pR7.	If	Dpr11	expression	in	all	PRs	produced	the	same	effect	
as	ss	expression,	all	R7	terminals	would	express	both	Rh4-lacZ	and	Chp,	because	they	
would	all	be	y.	Scale	bar,	5	µm.	
(J)	Ss	overexpression	(ssGOF)	converts	all	R7	PRs	to	yR7,	and	converts	almost	all	columns	to	
yellow	due	to	selection	of	yDm8,	which	ensures	their	survival.	Cross-section	view	of	
medulla	neuropil	at	54h	APF	labeled	with	anti-Chp	(magenta)	and	anti-DIP-γ	(green).	
Compare	to	Figure	8F.	Maximum	intensity	projection.	
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Figure	8-figure	supplement	2:	yDm8	arbors	do	not	innervate	pR7	home	columns	in	
dpr11	mutants.	

(A)-(B):	Surviving	yDm8	do	not	mistarget	to	pR7	home	columns	in	a	dpr11	mutant.	Mid-
pupal	optic	lobes	of	dpr11GFP	heterozygote	reporter	line	(WT)	and	dpr11GFP/-	(mutant)	were	
labeled	with	anti-GFP	for	yR7	(green),	anti-DIP-γ	for	yDm8	(red)	and	Chp	for	all	PRs	(blue).	
(A)	and	(B)	show	all	three	channels,	and	(A’)	and	(B’)	show	only	red	and	blue.	A	yR7	
column	labeled	by	DIP-γ	is	defined	as	one	in	which	there	are	red	pixels	directly	on	top	of	
the	blue	and	green	Chp	and	dpr11GFP	labeling.	Note	that	all	yR7	columns	with	green	labeling	
in	(A)	(these	appear	white)	are	labeled	by	both	red	and	blue	in	(A’).	However,	in	dpr11	
mutants,	some	yR7	columns	(circled	in	(B)	and	(B’))	with	green	labeling	have	no	red	DIP-γ	
labeling	on	top	of	the	column,	indicating	that	these	are	vacant	yellow	columns	that	have	no	
yDm8.	These	are	quantitated	in	(C).	All	dpr11	mutant	columns	are	either	blue	(pR7-Chp	
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only),	or	blue+red+green	(Chp+DIP-γ+dpr11GFP),	showing	that	no	yDm8s	mistarget	to	pR7s	
(i.e.,	there	are	no	red+blue	columns	in	(B)).		
		
	(C):	Some	yR7	home	columns	are	uninnervated	in	dpr11	mutants	due	to	yDm8	cell	death.	
Pupal	optic	lobes	of	dpr11GFP	reporter	line	(dpr11+/-)	and	dpr11-/-	were	labeled	with	anti-
GFP	for	yR7,	anti-DIP-γ	for	yDm8	and	Chp	for	all	PRs.	Number	of	yR7	columns	in	the	
medulla	were	quantitated	in	6x6	grids	drawn	on	images	of	cross-section	views.	Number	of	
yR7	columns	without	yDm8	partners	was	determined	by	counting	how	many	dpr11GFP	
labeled	yR7	did	not	have	yDm8	labeling	adjacent	to	them.	Graph	shows	mean	+/-	std.	
deviation	and	unpaired	Student’s	t-test	p-values.	In	these	grids,	we	observed	no	mispairing	
of	yDm8	with	pR7,	which	would	be	demonstrated	by	finding	anti-DIP-γ	labeling	adjacent	to	
R7	columns	that	were	unlabeled	by	anti-GFP.	
dpr11-/+	0.011+/-0.02,	dpr11-/-	0.22+/-0.09,	***p=0.0008		
	
(D):	yR7	overshoots	detected	with	a	truncated	Brp	marker	are	increased	in	the	dpr11	null	
mutant.	We	repeated	our	previously	published	analysis	of	yR7	overshoots	in	dpr11	
mutants	using	the	CRISPR-generated	dpr11	null	allele	instead	of	dpr11GFP/Df	(Carrillo	et	al.,	
2015;	Xu	et	al.,	2018b).	We	used	the	same	reporter	as	before,	Rh4	driving	a	truncated	
version	of	Brp	(Brp-short;	(Berger-Muller	et	al.,	2013))	and	determined	the	number	of	
overshoots	in	which	Brp-short	labeling	was	observed	beyond	(proximal	to)	M6.	The	
quantitation	was	done	blind	by	a	person	not	involved	in	the	experiment.	Graph	shows	
mean	+/-	std.	deviation	and	unpaired	Student’s	t-test	p-values.	
dpr11-/+	0.09+/-0.08,	dpr11-/-	0.23+/-0.1,	**p=0.0011	
	

	 	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


80	
	

REFERENCES	

Ashley,	J.,	Sorrentino,	V.,	Lobb-Rabe,	M.,	Nagarkar-Jaiswal,	S.,	Tan,	L.,	Xu,	S.,	Xiao,	Q.,	Zinn,	K.,	and	
Carrillo,	R.A.	(2019).	Transsynaptic	interactions	between	IgSF	proteins	DIP-alpha	and	Dpr10	are	required	
for	motor	neuron	targeting	specificity.	eLife	8.	
Barish,	S.,	Nuss,	S.,	Strunilin,	I.,	Bao,	S.,	Mukherjee,	S.,	Jones,	C.D.,	and	Volkan,	P.C.	(2018).	Combinations	
of	DIPs	and	Dprs	control	organization	of	olfactory	receptor	neuron	terminals	in	Drosophila.	PLoS	Genet	
14,	e1007560.	
Berger-Muller,	S.,	Sugie,	A.,	Takahashi,	F.,	Tavosanis,	G.,	Hakeda-Suzuki,	S.,	and	Suzuki,	T.	(2013).	
Assessing	the	role	of	cell-surface	molecules	in	central	synaptogenesis	in	the	Drosophila	visual	system.	
PLoS	One	8,	e83732.	
Carrillo,	R.A.,	Ozkan,	E.,	Menon,	K.P.,	Nagarkar-Jaiswal,	S.,	Lee,	P.T.,	Jeon,	M.,	Birnbaum,	M.E.,	Bellen,	
H.J.,	Garcia,	K.C.,	and	Zinn,	K.	(2015).	Control	of	Synaptic	Connectivity	by	a	Network	of	Drosophila	IgSF	
Cell	Surface	Proteins.	Cell	163,	1770-1782.	
Cheng,	S.,	Ashley,	J.,	Kurleto,	J.D.,	Lobb-Rabe,	M.,	Park,	Y.J.,	Carrillo,	R.A.,	and	Ozkan,	E.	(2019a).	
Molecular	basis	of	synaptic	specificity	by	immunoglobulin	superfamily	receptors	in	Drosophila.	eLife	8.	
Cheng,	S.,	Park,	Y.,	Kurleto,	J.D.,	Jeon,	M.,	Zinn,	K.,	Thornton,	J.W.,	and	Ozkan,	E.	(2019b).	Family	of	
neural	wiring	receptors	in	bilaterians	defined	by	phylogenetic,	biochemical,	and	structural	evidence.	
Proc	Natl	Acad	Sci	U	S	A	116,	9837-9842.	
Cosmanescu,	F.,	Katsamba,	P.S.,	Sergeeva,	A.P.,	Ahlsen,	G.,	Patel,	S.D.,	Brewer,	J.J.,	Tan,	L.,	Xu,	S.,	Xiao,	
Q.,	Nagarkar-Jaiswal,	S.,	et	al.	(2018).	Neuron-Subtype-Specific	Expression,	Interaction	Affinities,	and	
Specificity	Determinants	of	DIP/Dpr	Cell	Recognition	Proteins.	Neuron	100,	1385-1400	e1386.	
Davis,	F.P.,	Nern,	A.,	Picard,	S.,	Reiser,	M.B.,	Rubin,	G.M.,	Eddy,	S.R.,	and	Henry,	G.L.	(2018).	A	genetic,	
genomic,	and	computational	resource	for	exploring	neural	circuit	function.	bioRxiv,	385476.	
Fischbach,	K.F.,	and	Dittrich,	A.P.M.	(1989).	The	optic	lobe	of	Drosophila	melanogaster.	I.	A	Golgi	analysis	
of	wild-type	structure.	Cell	and	tissue	research	258,	441-475.	
Gao,	S.,	Takemura,	S.Y.,	Ting,	C.Y.,	Huang,	S.,	Lu,	Z.,	Luan,	H.,	Rister,	J.,	Thum,	A.S.,	Yang,	M.,	Hong,	S.T.,	
et	al.	(2008).	The	neural	substrate	of	spectral	preference	in	Drosophila.	Neuron	60,	328-342.	
Hadjieconomou,	D.,	Timofeev,	K.,	and	Salecker,	I.	(2011).	A	step-by-step	guide	to	visual	circuit	assembly	
in	Drosophila.	Curr	Opin	Neurobiol	21,	76-84.	
Hasegawa,	E.,	Kitada,	Y.,	Kaido,	M.,	Takayama,	R.,	Awasaki,	T.,	Tabata,	T.,	and	Sato,	M.	(2011).	
Concentric	zones,	cell	migration	and	neuronal	circuits	in	the	Drosophila	visual	center.	Development	138,	
983-993.	
Johnston,	R.J.,	Jr.,	Otake,	Y.,	Sood,	P.,	Vogt,	N.,	Behnia,	R.,	Vasiliauskas,	D.,	McDonald,	E.,	Xie,	B.,	Koenig,	
S.,	Wolf,	R.,	et	al.	(2011).	Interlocked	feedforward	loops	control	cell-type-specific	Rhodopsin	expression	
in	the	Drosophila	eye.	Cell	145,	956-968.	
Karagiannis,	E.D.,	and	Boyden,	E.S.	(2018).	Expansion	microscopy:	development	and	neuroscience	
applications.	Curr	Opin	Neurobiol	50,	56-63.	
Karuppudurai,	T.,	Lin,	T.Y.,	Ting,	C.Y.,	Pursley,	R.,	Melnattur,	K.V.,	Diao,	F.,	White,	B.H.,	Macpherson,	L.J.,	
Gallio,	M.,	Pohida,	T.,	et	al.	(2014).	A	Hard-Wired	Glutamatergic	Circuit	Pools	and	Relays	UV	Signals	to	
Mediate	Spectral	Preference	in	Drosophila.	Neuron	81,	603-615.	
Kulkarni,	A.,	Ertekin,	D.,	Lee,	C.H.,	and	Hummel,	T.	(2016).	Birth	order	dependent	growth	cone	
segregation	determines	synaptic	layer	identity	in	the	Drosophila	visual	system.	eLife	5,	e13715.	
Kurusu,	M.,	Cording,	A.,	Taniguchi,	M.,	Menon,	K.,	Suzuki,	E.,	and	Zinn,	K.	(2008).	A	screen	of	cell-surface	
molecules	identifies	leucine-rich	repeat	proteins	as	key	mediators	of	synaptic	target	selection.	Neuron	
59,	972-985.	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


81	
	

Lin,	T.Y.,	Luo,	J.,	Shinomiya,	K.,	Ting,	C.Y.,	Lu,	Z.,	Meinertzhagen,	I.A.,	and	Lee,	C.H.	(2016).	Mapping	
chromatic	pathways	in	the	Drosophila	visual	system.	J	Comp	Neurol	524,	213-227.	
Melnattur,	K.V.,	Pursley,	R.,	Lin,	T.Y.,	Ting,	C.Y.,	Smith,	P.D.,	Pohida,	T.,	and	Lee,	C.H.	(2014).	Multiple	
redundant	medulla	projection	neurons	mediate	color	vision	in	Drosophila.	Journal	of	neurogenetics	28,	
374-388.	
Mosca,	T.J.,	Luginbuhl,	D.J.,	Wang,	I.E.,	and	Luo,	L.	(2017).	Presynaptic	LRP4	promotes	synapse	number	
and	function	of	excitatory	CNS	neurons.	eLife	6.	
Nakagawa,	Y.,	Fujiwara-Fukuta,	S.,	Yorimitsu,	T.,	Tanaka,	S.,	Minami,	R.,	Shimooka,	L.,	and	Nakagoshi,	H.	
(2011).	Spatial	and	temporal	requirement	of	defective	proventriculus	activity	during	Drosophila	midgut	
development.	Mech	Dev	128,	258-267.	
Nakamura,	M.,	Baldwin,	D.,	Hannaford,	S.,	Palka,	J.,	and	Montell,	C.	(2002).	Defective	proboscis	
extension	response	(DPR),	a	member	of	the	Ig	superfamily	required	for	the	gustatory	response	to	salt.	J	
Neurosci	22,	3463-3472.	
Nern,	A.,	Pfeiffer,	B.D.,	and	Rubin,	G.M.	(2015).	Optimized	tools	for	multicolor	stochastic	labeling	reveal	
diverse	stereotyped	cell	arrangements	in	the	fly	visual	system.	Proc	Natl	Acad	Sci	U	S	A	112,	E2967-2976.	
Otsuna,	H.,	Shinomiya,	K.,	and	Ito,	K.	(2014).	Parallel	neural	pathways	in	higher	visual	centers	of	the	
Drosophila	brain	that	mediate	wavelength-specific	behavior.	Front	Neural	Circuits	8,	8.	
Özkan,	E.,	Carrillo,	R.A.,	Eastman,	C.L.,	Weiszmann,	R.,	Waghray,	D.,	Johnson,	K.G.,	Zinn,	K.,	Celniker,	S.E.,	
and	Garcia,	K.C.	(2013).	An	Extracellular	Interactome	of	Immunoglobulin	and	LRR	Proteins	Reveals	
Receptor-Ligand	Networks.	Cell	154,	228-239.	
Posnien,	N.,	Hopfen,	C.,	Hilbrant,	M.,	Ramos-Womack,	M.,	Murat,	S.,	Schonauer,	A.,	Herbert,	S.L.,	Nunes,	
M.D.,	Arif,	S.,	Breuker,	C.J.,	et	al.	(2012).	Evolution	of	eye	morphology	and	rhodopsin	expression	in	the	
Drosophila	melanogaster	species	subgroup.	PLoS	One	7,	e37346.	
Sanes,	J.R.,	and	Zipursky,	S.L.	(2010).	Design	principles	of	insect	and	vertebrate	visual	systems.	Neuron	
66,	15-36.	
Schnaitmann,	C.,	Haikala,	V.,	Abraham,	E.,	Oberhauser,	V.,	Thestrup,	T.,	Griesbeck,	O.,	and	Reiff,	D.F.	
(2018).	Color	Processing	in	the	Early	Visual	System	of	Drosophila.	Cell	172,	318-330	e318.	
Song,	B.M.,	and	Lee,	C.H.	(2018).	Toward	a	Mechanistic	Understanding	of	Color	Vision	in	Insects.	Front	
Neural	Circuits	12,	16.	
Sperry,	R.W.	(1963).	Chemoaffinity	in	the	Orderly	Growth	of	Nerve	Fiber	Patterns	and	Connections.	Proc	
Natl	Acad	Sci	U	S	A	50,	703-710.	
Takemura,	S.Y.,	Bharioke,	A.,	Lu,	Z.,	Nern,	A.,	Vitaladevuni,	S.,	Rivlin,	P.K.,	Katz,	W.T.,	Olbris,	D.J.,	Plaza,	
S.M.,	Winston,	P.,	et	al.	(2013).	A	visual	motion	detection	circuit	suggested	by	Drosophila	connectomics.	
Nature	500,	175-181.	
Takemura,	S.Y.,	Xu,	C.S.,	Lu,	Z.,	Rivlin,	P.K.,	Parag,	T.,	Olbris,	D.J.,	Plaza,	S.,	Zhao,	T.,	Katz,	W.T.,	Umayam,	
L.,	et	al.	(2015).	Synaptic	circuits	and	their	variations	within	different	columns	in	the	visual	system	of	
Drosophila.	Proc	Natl	Acad	Sci	U	S	A	112,	13711-13716.	
Tan,	L.,	Zhang,	K.X.,	Pecot,	M.Y.,	Nagarkar-Jaiswal,	S.,	Lee,	P.T.,	Takemura,	S.Y.,	McEwen,	J.M.,	Nern,	A.,	
Xu,	S.,	Tadros,	W.,	et	al.	(2015).	Ig	Superfamily	Ligand	and	Receptor	Pairs	Expressed	in	Synaptic	Partners	
in	Drosophila.	Cell	163,	1756-1769.	
Ting,	C.Y.,	McQueen,	P.G.,	Pandya,	N.,	Lin,	T.Y.,	Yang,	M.,	Reddy,	O.V.,	O'Connor,	M.B.,	McAuliffe,	M.,	
and	Lee,	C.H.	(2014).	Photoreceptor-derived	activin	promotes	dendritic	termination	and	restricts	the	
receptive	fields	of	first-order	interneurons	in	Drosophila.	Neuron	81,	830-846.	
Ting,	C.Y.,	Yonekura,	S.,	Chung,	P.,	Hsu,	S.N.,	Robertson,	H.M.,	Chiba,	A.,	and	Lee,	C.H.	(2005).	Drosophila	
N-cadherin	functions	in	the	first	stage	of	the	two-stage	layer-selection	process	of	R7	photoreceptor	
afferents.	Development	132,	953-963.	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


82	
	

Togane,	Y.,	Ayukawa,	R.,	Hara,	Y.,	Akagawa,	H.,	Iwabuchi,	K.,	and	Tsujimura,	H.	(2012).	Spatio-temporal	
pattern	of	programmed	cell	death	in	the	developing	Drosophila	optic	lobe.	Development,	growth	&	
differentiation	54,	503-518.	
Venkatasubramanian,	L.,	Guo,	Z.,	Xu,	S.,	Tan,	L.,	Xiao,	Q.,	Nagarkar-Jaiswal,	S.,	and	Mann,	R.S.	(2019).	
Stereotyped	terminal	axon	branching	of	leg	motor	neurons	mediated	by	IgSF	proteins	DIP-alpha	and	
Dpr10.	eLife	8.	
Viets,	K.,	Eldred,	K.,	and	Johnston,	R.J.,	Jr.	(2016).	Mechanisms	of	Photoreceptor	Patterning	in	
Vertebrates	and	Invertebrates.	Trends	Genet	32,	638-659.	
Wernet,	M.F.,	Mazzoni,	E.O.,	Celik,	A.,	Duncan,	D.M.,	Duncan,	I.,	and	Desplan,	C.	(2006).	Stochastic	
spineless	expression	creates	the	retinal	mosaic	for	colour	vision.	Nature	440,	174-180.	
Xu,	C.,	Theisen,	E.,	Rumbaut,	E.,	Shum,	B.,	Peng,	J.,	Tarnogorska,	D.,	Borycz,	J.A.,	Tan,	L.,	Courgeon,	M.,	
Meinertzhagen,	I.A.,	et	al.	(2018a).	Control	of	synaptic	specificity	by	limiting	promiscuous	synapse	
formation.	bioRxiv.	
Xu,	S.,	Xiao,	Q.,	Cosmanescu,	F.,	Sergeeva,	A.P.,	Yoo,	J.,	Lin,	Y.,	Katsamba,	P.S.,	Ahlsen,	G.,	Kaufman,	J.,	
Linaval,	N.T.,	et	al.	(2018b).	Interactions	between	the	Ig-Superfamily	Proteins	DIP-alpha	and	Dpr6/10	
Regulate	Assembly	of	Neural	Circuits.	Neuron	100,	1369-1384	e1366.	
Yan,	J.,	Anderson,	C.,	Viets,	K.,	Tran,	S.,	Goldberg,	G.,	Small,	S.,	and	Johnston,	R.J.,	Jr.	(2017).	Regulatory	
logic	driving	stable	levels	of	defective	proventriculus	expression	during	terminal	photoreceptor	
specification	in	flies.	Development	144,	844-855.	

	

	

	 	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/


83	
	

	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/679704doi: bioRxiv preprint first posted online Jun. 22, 2019; 

http://dx.doi.org/10.1101/679704
http://creativecommons.org/licenses/by-nc-nd/4.0/

