5 research outputs found

    Complexation of F⁻ by Li⁺ and Mg²⁺ Ions as Inorganic Anion Acceptors in Lactone-Based Li⁺/F⁻ and Mg²⁺/F⁻ Hybrid Electrolytes for Fluoride Shuttle Batteries

    Get PDF
    The development of high-quality fluoride-ion transporting electrolytes is a crucial demand for fluoride shuttle batteries (FSBs). However, the uncontrolled chemical and electrochemical activities of fluoride ions narrow the available potential window, hindering the development of high-voltage FSB cells. We present a method for upgrading recently developed lactone-based liquid fluoride electrolytes by complexation of F⁻ with Li⁺ and Mg²⁺ ions. In the resultant Li⁺/F⁻ and Mg²⁺/F⁻ hybrid electrolytes, Li2F+ and MgF+ were the most probable soluble complexes, and the effective fluoride concentrations could reach ∼0.15 M along with excess Li⁺(Mg²⁺) ions. Unique interactions between F⁻ and Li⁺(Mg²⁺) were observed using ¹⁹F nuclear magnetic resonance spectroscopy. Li⁺(Mg²⁺) ions thus served as inorganic anion acceptors with ultimate redox stabilities to expand the negative potential window of the electrolytes to near −3 V vs SHE. The proposed complex formation was also supported by a conductometric titration method. We demonstrated the superior and versatile electrochemical performances of the Li⁺/F⁻ hybrid electrolyte, which enabled reversible charge/discharge reactions of various metal electrodes and composite electrodes in a wide range of redox series. Further, the Li⁺/F⁻ hybrid electrolyte opened valid new reaction paths for aluminum, making it a promising negative electrode in high-voltage FSB cells

    Lactone-Based Liquid Electrolytes for Fluoride Shuttle Batteries

    Get PDF
    Rechargeable secondary batteries operating through fluoride-ion shuttling between the positive and negative electrodes, referred to as fluoride shuttle batteries (FSBs), offer a potentially promising solution to overcoming the energy-density limitations of current lithium-ion battery systems. However, there are many technical issues that need to be resolved to achieve high-quality fluoride-carrying electrolytes and ensure reversible transformations between a metal and its fluoride counterpart at both electrodes. Here, we introduce novel lactone-based liquid electrolytes consisting either of CsF or KF, which are prepared by a solvent substitution method. Although the maximum fluoride-ion concentration achieved by the method is approximately 0.05 M, these systems behave as strong electrolytes where CsF(KF) is almost fully dissociated into Cs⁺(K⁺) and F⁻ ions to give a maximum ionic conductivity of 0.8 mS.cm⁻¹. Hence, the solvent supports electrochemically active fluoride ions that can drive reversible metal/metal-fluoride transformations at room temperature for a wide range of metal electrodes. However, irreversible reductive reactions of the solvent, also promoted by the fluoride ions, limit currently the negative potential window to approximately −1.5 V vs the standard hydrogen electrode
    corecore