15,786 research outputs found

    Anomalous low temperature state of CeOs4Sb12: Magnetic field and La-impurity study

    Full text link
    Specific heat for single crystalline samples of Ce1-xLaxOs4Sb12 at zero-field and magnetic fields to 14 T is reported. Our results confirm enhanced value of the electronic specific heat coefficient in the paramagnetic state. They provide arguments for the intrinsic origin of the 1.1 K anomaly. This transition leads to opening of the gap at the Fermi surface. This low temperature state of CeOs4Sb12 is extremely sensitive to chemical impurities. 2% of La substituted for Ce suppresses the transition and reduces the electronic specific heat coefficient. The magnetic field response of the specific heat is also anomalous.Comment: 4 pages, 3 figure

    End-to-End Learning of Video Super-Resolution with Motion Compensation

    Full text link
    Learning approaches have shown great success in the task of super-resolving an image given a low resolution input. Video super-resolution aims for exploiting additionally the information from multiple images. Typically, the images are related via optical flow and consecutive image warping. In this paper, we provide an end-to-end video super-resolution network that, in contrast to previous works, includes the estimation of optical flow in the overall network architecture. We analyze the usage of optical flow for video super-resolution and find that common off-the-shelf image warping does not allow video super-resolution to benefit much from optical flow. We rather propose an operation for motion compensation that performs warping from low to high resolution directly. We show that with this network configuration, video super-resolution can benefit from optical flow and we obtain state-of-the-art results on the popular test sets. We also show that the processing of whole images rather than independent patches is responsible for a large increase in accuracy.Comment: Accepted to GCPR201

    Magnetoresistance Effects in SrFeO(3-x): Dependence on Phase Composition and Relation to Magnetic and Charge Order

    Full text link
    Single crystals of iron(IV) rich oxides SrFeO(3-x) with controlled oxygen content have been studied by Moessbauer spectroscopy, magnetometry, magnetotransport measurements, Raman spectroscopy, and infrared ellipsometry in order to relate the large magnetoresistance (MR) effects in this system to phase composition, magnetic and charge order. It is shown that three different types of MR effects occur. In cubic SrFeO3 (x = 0) a large negative MR of 25% at 9 T is associated with a hitherto unknown 60 K magnetic transition and a subsequent drop in resistivity. The 60 K transition appears in addition to the onset of helical ordering at ~130 K. In crystals with vacancy-ordered tetragonal SrFeO(3-x) as majority phase (x ~0.15) a coincident charge/antiferromagnetic ordering transition near 70 K gives rise to a negative giant MR effect of 90% at 9 T. A positive MR effect is observed in tetragonal and orthorhombic materials with increased oxygen deficiency (x = 0.19, 0.23) which are insulating at low temperatures. Phase mixtures can result in a complex superposition of these different MR phenomena. The MR effects in SrFeO(3-x) differ from those in manganites as no ferromagnetic states are involved

    Schr\"odinger's cat in an optical sideband

    Get PDF
    We propose a method to subtract a photon from a double sideband mode of continuous-wave light. The central idea is to use phase modulation as a frequency sideband beamsplitter in the heralding photon subtraction scheme, where a small portion of the sideband mode is downconverted to the carrier frequency to provide a trigger photon. An optical Schr\"odinger's cat state is created by applying the propesed method to a squeezed state at 500MHz sideband, which is generated by an optical parametric oscillator. The Wigner function of the cat state reconstructed from a direct homodyne measurement of the 500MHz sideband modes shows the negativity of W(0,0)=0.088±0.001W(0,0) = -0.088\pm0.001 without any loss corrections.Comment: 11 pages, 9 figure

    Could the Ultra Metal-poor Stars be Chemically Peculiar and Not Related to the First Stars?

    Get PDF
    Chemically peculiar stars define a class of stars that show unusual elemental abundances due to stellar photospheric effects and not due to natal variations. In this paper, we compare the elemental abundance patterns of the ultra metal-poor stars with metallicities [Fe/H] 5\sim -5 to those of a subclass of chemically peculiar stars. These include post-AGB stars, RV Tauri variable stars, and the Lambda Bootis stars, which range in mass, age, binarity, and evolutionary status, yet can have iron abundance determinations as low as [Fe/H] 5\sim -5. These chemical peculiarities are interpreted as due to the separation of gas and dust beyond the stellar surface, followed by the accretion of dust depleted-gas. Contrary to this, the elemental abundances in the ultra metal-poor stars are thought to represent yields of the most metal-poor supernova and, therefore, observationally constrain the earliest stages of chemical evolution in the Universe. The abundance of the elements in the photospheres of the ultra metal-poor stars appear to be related to the condensation temperature of that element; if so, then their CNO abundances suggest true metallicities of [X/H]~ -2 to -4, rather than their present metallicities of [Fe/H] < -5.Comment: Accepted for ApJ. 17 pages, 10 figure

    31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State

    Full text link
    The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation) measurements on the filled skutterudite system SmFe4P12 have been carried out. The temperature T dependence of the 31P-NMR spectra indicates the existence of the crystalline electric field effect splitting of the Sm3+$ (J = 5/2) multiplet into a ground state and an excited state of about 70 K. The spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T dependence deviated from the Korringa behavior below 7 K, which is independent of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher fields. The behavior is explained as 1/T1is determined by ferromagnetic fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons. The muSR measurements in zero field show the appearance of a static internal field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006

    Metallicities of Planet Hosting Stars: A Sample of Giants and Subgiants

    Full text link
    This work presents a homogeneous derivation of atmospheric parameters and iron abundances for a sample of giant and subgiant stars which host giant planets, as well as a control sample of subgiant stars not known to host giant planets. The analysis is done using the same technique as for our previous analysis of a large sample of planet-hosting and control sample dwarf stars. A comparison between the distributions of [Fe/H] in planet-hosting main-sequence stars, subgiants, and giants within these samples finds that the main-sequence stars and subgiants have the same mean metallicity of \simeq +0.11 dex, while the giant sample is typically more metal poor, having an average metallicity of = -0.06 dex. The fact that the subgiants have the same average metallicities as the dwarfs indicates that significant accretion of solid metal-rich material onto the planet-hosting stars has not taken place, as such material would be diluted in the evolution from dwarf to subgiant. The lower metallicity found for the planet-hosting giant stars in comparison with the planet-hosting dwarfs and subgiants is interpreted as being related to the underlying stellar mass, with giants having larger masses and thus, on average larger-mass protoplanetary disks. In core accretion models of planet formation, larger disk masses can contain the critical amount of metals necessary to form giant planets even at lower metallicities.Comment: 38 pages, 7 figures, 4 tables, accepted for publication in Ap
    corecore