30 research outputs found

    ΠœΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ участі Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ²Π°Π½Π½Ρ– ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… процСсів

    Get PDF
    ДисСртація присвячСна Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½ΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡ— ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ встановлСння Ρ€ΠΎΠ»Ρ– стСрСотипних Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉ сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ як Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми Π² Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΡŒΠΎΠ²Π°Π½Ρ– Π·Π°Π³Π°Π»ΡŒΠ½Ρ– ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ ΠΎΡ†Ρ–Π½ΠΊΠΈ стану Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρ‚Π° Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π° Ρ—Ρ— Ρ€ΠΎΠ»ΡŒ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу Π² ΠΏΠ°Ρ€Π΅Π½Ρ…Ρ–ΠΌΠ°Ρ‚ΠΎΠ·Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½Π°Ρ… (Π½ΠΈΡ€ΠΊΠΈ, ΠΏΠ΅Ρ‡Ρ–Π½ΠΊΠ°, ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²Π° Π·Π°Π»ΠΎΠ·Π°) Ρ– кістковій Ρ‚ΠΊΠ°Π½ΠΈΠ½Ρ–. Π’ΠΏΠ΅Ρ€ΡˆΠ΅ Π²ΠΈΠ²Ρ‡Π΅Π½Π° Ρ€ΠΎΠ»ΡŒ рСгуляторного ΡˆΠ»ΡΡ…Ρƒ RANK-RANKL-OPG ΠΏΡ€ΠΈ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΌΠΎΠ΄Π΅Π»ΡŽΠ²Π°Π½Π½Ρ– ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ— Π½ΠΈΡ€ΠΎΠΊ, встановлСна ΠΉΠΎΠ³ΠΎ активація Ρ‚Π° Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π²Π·Π°Ρ”ΠΌΠΎΠ·Π²'язку Π· ΠΏΡ€ΠΎ- Ρ‚Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½ΠΈΠΌΠΈ Ρ†ΠΈΡ‚ΠΎΠΊΡ–Π½Π°ΠΌΠΈ, Ρƒ Ρ‚ΠΎΠΌΡƒ числі ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Π° корСляція ΠΌΡ–ΠΆ RANKL Ρ– ΠΏΡ€ΠΎΡ„Ρ–Π±Ρ€ΠΎΡ‚ΠΈΡ‡Π½ΠΈΠΌ TGF-Ξ²1 (r = 0,61). ВиявлСні Π½ΠΎΠ²Ρ– ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ стану кісткової Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ„Ρ–Π±Ρ€ΠΎΠ·Ρƒ ΠΏΠ΅Ρ‡Ρ–Π½ΠΊΠΈ Ρ‚Π° ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ, ΠΏΠΎΠ²'язані Π·Ρ– зниТСнням Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡ— активності Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Ρ–Π². ВстановлСно, Ρ‰ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ гСмостазу Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†Ρ–ΡŽ ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… процСсів Ρƒ сполучній Ρ‚ΠΊΠ°Π½ΠΈΠ½Ρ–. ΠœΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ пСрСнСсСння ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ… Π½Π° ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌ людини ΡƒΡ‚ΠΎΡ‡Π½ΡŽΠ²Π°Π»Π°ΡΡ Π½Π° ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΎΠΌΡƒ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–. ВиявлСна Ρ€ΠΎΠ»ΡŒ стану Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΡƒΡΠΊΠ»Π°Π΄Π½Π΅Π½ΡŒ Ρ– Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Ρ–Π² Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π· Π³Ρ–Π΄Ρ€ΠΎΠ½Π΅Ρ„Ρ€ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡŽ Ρ‚Ρ€Π°Π½ΡΡ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ”ΡŽ Π½ΠΈΡ€ΠΎΠΊ, встановлСна активація рСгуляторного ΡˆΠ»ΡΡ…Ρƒ RANK-RANKL-OPG Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π½Π° Π³Ρ–Π΄Ρ€ΠΎΠ½Π΅Ρ„Ρ€ΠΎΠ·. Показана взаємодія Ρ€Ρ–Π·Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² рСгуляції Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΏΡ€ΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ— ΠΎΡ€Π³Π°Π½Ρ–Π² ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΡ— Π·ΠΎΠ½ΠΈ. На основі ΠΎΡ†Ρ–Π½ΠΊΠΈ стану Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ прогнозування Ρ…Ρ–Ρ€ΡƒΡ€Π³Ρ–Ρ‡Π½ΠΈΡ… ΡƒΡΠΊΠ»Π°Π΄Π½Π΅Π½ΡŒ Ρ‚Π° Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Ρ–Π² Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½Π½Ρ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚Π°Π°Π½Π°Π»Ρ–Π· ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ…, Π½Π° основі якого Π·Π° допомогою Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ встановлСні основні Π³Ρ€ΡƒΠΏΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² (Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π²), які Π²Ρ–Π΄ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡŒ основні напрямки ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу, опосСрСдковані Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ”ΡŽ Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ. Π”ΠΎΠΏΠΎΠ²Π½Π΅Π½Ρ– Π½Π°ΡƒΠΊΠΎΠ²Ρ– Π΄Π°Π½Ρ– ΠΏΡ€ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ Ρ…Ρ€ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу ΠΏΡ€ΠΈ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½Π½ΡΡ… Π½ΠΈΡ€ΠΎΠΊ, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Π·ΠΌΡ–Π½ΠΈ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ стану сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎ зафіксовані Π½Π°Π²Ρ–Ρ‚ΡŒ Ρƒ Ρ€Π°Π·Ρ– ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½Π΅Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу Π² Π½Π΅Π²Π΅Π»ΠΈΠΊΠΎΠΌΡƒ Π·Π° масою ΠΎΡ€Π³Π°Π½Ρ–. Π”ΠΎΠΏΠΎΠ²Π½Π΅Π½Ρ– Π½Π°ΡƒΠΊΠΎΠ²Ρ– Π΄Π°Π½Ρ– ΠΏΡ€ΠΎ Ρ€ΠΎΠ»ΡŒ Ρ‚Π° ΡΡ‚ΡƒΠΏΡ–Π½ΡŒ залучСності ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½ΡŒ рСгуляторної Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΡŒ ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎ-кишкового Ρ‚Ρ€Π°ΠΊΡ‚Ρƒ, Π² Ρ‚ΠΎΠΌΡƒ числі Π΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΡ— Π²ΠΈΡ€Π°Π·ΠΊΠΈ. Показана Ρ€ΠΎΠ»ΡŒ Ρ– значСння зниТСння Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Ρ€Π΅Π·Π΅Ρ€Π²Ρ–Π² Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ для Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Ρ€ΠΈΠ·ΠΈΠΊΡ–Π² Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΠΎΡΡ‚Ρ– Π² популяції. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Ρ–Π½ΠΊΠΈ Ρ€ΠΈΠ·ΠΈΠΊΡ–Π² для популяційного Π·Π΄ΠΎΡ€ΠΎΠ²'я насСлСння Π½Π° основі Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Ρ€Π΅Π·Π΅Ρ€Π²Ρ–Π² Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ.ДиссСртация посвящСна Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ – установлСния Ρ€ΠΎΠ»ΠΈ стСрСотипных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΊΠ°ΠΊ физиологичСской систСмы Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ патологичСского процСсса. Π˜Π·ΡƒΡ‡Π°Π»ΠΈΡΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… молСкулярных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° модСлях ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΠ°Ρ‚ΠΎΠ·Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠ² (ΠΏΠΎΡ‡ΠΊΠΈ, ΠΏΠ΅Ρ‡Π΅Π½ΡŒ, подТСлудочная ΠΆΠ΅Π»Π΅Π·Π°) ΠΈ костной Ρ‚ΠΊΠ°Π½ΠΈ Π² экспСримСнтС. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ пСрСноса ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π½Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡƒΡ‚ΠΎΡ‡Π½ΡΠ»Π°ΡΡŒ Π½Π° клиничСском ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡ‡Π΅ΠΊ Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‚ΡΡ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π°ΠΌΠΈ, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΡƒΡ€ΠΎΠ²Π½ΠΈ Π°Π΄ΠΈΠΏΠΎΠΊΠΈΠ½ΠΎΠ², активируСтся рСгуляторноС Π·Π²Π΅Π½ΠΎ костной Ρ‚ΠΊΠ°Π½ΠΈ – ΠΏΡƒΡ‚ΡŒ RANKRANKL-OPG, ΠΈΠΌΠ΅Π΅Ρ‚ мСсто ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ RANKL ΠΈ висфатином (r = 0,48), профибротичСским TGF-Ξ²1 ΠΈ Π°Π΄ΠΈΠΏΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠΌ (r = 0,47). ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΈ Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ дСструктивно-дистрофичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ экскрСции оксипролина с ΠΌΠΎΡ‡ΠΎΠΉ Π·Π° счСт связанной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄ патологичСского процСсса Π½Π° систСмный ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ опрСдСляСтся расстройством взаимодСйствия ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ с Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ влияния рСализуСтся Ρ‡Π΅Ρ€Π΅Π· систСму Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ тСсныС коррСляционныС связи с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½ΠΎΠ³ΠΎ Π·Π²Π΅Π½Π° гСмостаза. ΠŸΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ состояния костной Ρ‚ΠΊΠ°Π½ΠΈ, хроничСской ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΈ Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ гСмостаза Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… процСссов Π² ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, Ρ‡Ρ‚ΠΎ проявляСтся сниТСниСм Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ². Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π³ΠΈΠ΄Ρ€ΠΎΠ½Π΅Ρ„Ρ€ΠΎΠ·ΠΎΠΌ установлСна активация рСгуляторного ΠΏΡƒΡ‚ΠΈ RANK-RANKL-OPG, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² рСгулирования Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Основой этого процСсса являСтся дисбаланс Π² систСмС Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² – IL-1RA, IL-17 ΠΈ висфатина, Π° Ρ‚Π°ΠΊΠΆΠ΅ дисбаланс (ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ коррСляция) ΠΌΠ΅ΠΆΠ΄Ρƒ уровнями TGF-Ξ²1 ΠΈ Π°Π΄ΠΈΠΏΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½Π° (r = - 0,29). Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с обструктивной ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈ Ρ‚ΡΠΆΠ΅ΡΡ‚ΡŒ послСопСрационных ослоТнСний зависят ΠΎΡ‚ стСпСни выраТСнности исходного дисбаланса Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ профиля, Π² Ρ‚ΠΎΠΌ числС сниТСния уровня ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ обструкции Π½Π° Ρ„ΠΎΠ½Π΅ хроничСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ этой области ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ появлСниСм Π² ΠΊΡ€ΠΎΠ²ΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠ°ΠΌ ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ вСсти ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ. На основС Π°Π½Π°Π»ΠΈΠ·Π° коррСляционных связСй ΠΈ ΠΌΠ΅Ρ‚Π°Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΡ… стСрСотипныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π“Ρ€ΡƒΠΏΠΏΠ° 1 – соотвСтствуСт ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² Ρ†Π΅Π»ΠΎΠΌ. Π‘Ρ€Ρ‹Π² этих Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π²Π΅Π΄Π΅Ρ‚ ΠΊ Ρ…Ρ€ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ патологичСского процСсса ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ риска развития ослоТнСний ΠΈ Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²ΠΎΠ². К Π½Π΅ΠΉ относятся ΡƒΡ€ΠΎΠ²Π½ΠΈ висфатина, IL-4, IL-6, TGF-Ξ²1, масса ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ кости, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° 10 мкмоль/Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ основными молСкулярными посрСдниками срыва СстСствСнного тСчСния Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ. Π“Ρ€ΡƒΠΏΠΏΠ° 2 – соотвСтствуСт компСнсаторным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌ, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ достаточном ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСских Ρ€Π΅Π·Π΅Ρ€Π²ΠΎΠ², ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ, Π° Π½Π° систСмном ΡƒΡ€ΠΎΠ²Π½Π΅ – компСнсировано. Π’ Π½Π΅Π΅ входят: ΡƒΡ€ΠΎΠ²Π½ΠΈ IL-1, IL-1RA, RANKL, ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½Π° ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ концСнтрациях ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° 2,5 ΠΈ 10 мкмоль/Π». ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ 2 ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌΠΈ критСриями для ΠΎΡ†Π΅Π½ΠΊΠΈ сниТСния риска развития ослоТнСний Π² Ρ…ΠΎΠ΄Π΅ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π“Ρ€ΡƒΠΏΠΏΠ° 3 – соотвСтствуСт Ρ€Π΅Π·ΠΊΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Ρ… процСссов Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… задСйствовано Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΏΡƒΡ‚Π΅ΠΉ рСгулирования, со смСшСниСм Π² сторону прСобладания синтСза Π½Π°Π΄ распадом. Π“Ρ€ΡƒΠΏΠΏΠ° 3 ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ‚ ΡƒΡ€ΠΎΠ²Π½ΠΈ IL-17, OPG, RANKL, Π°Π΄ΠΈΠΏΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½Π°, ΠΏΠ°Ρ€Π°Ρ‚ΠΈΡ€Π΅ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ Π³ΠΎΡ€ΠΌΠΎΠ½Π°, всСх Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ оксипролина ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ концСнтрациях ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° 2,5 ΠΈ 5 мкмоль/Π». ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ этой Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ для ΠΎΡ†Π΅Π½ΠΊΠΈ вовлСчСнности физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² патологичСский процСсс Π½Π° Ρ€Π°Π½Π½ΠΈΡ… стадиях Π΅Π³ΠΎ развития, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ донозологичСскиС состояния. ΠŸΡ€ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΌΠ°Ρ… поврСТдСния ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ заболСвания выявляСтся Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ патологичСского процСсса физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² Ρ†Π΅Π»ΠΎΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΅Π΅ рСакция наряду с рСакциями Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ систСм ΠΏΡ€ΠΈ воспалСнии являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² синдрома систСмного Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° (SIRS). Π’ зависимости ΠΎΡ‚ рСактивности ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΈ особСнностСй поврСТдСния измСняСтся Ρ…ΠΎΠ΄ процСсса ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ вовлСчСния систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, Ρ‡Ρ‚ΠΎ являСтся Π²Π°ΠΆΠ½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Ρ…Ρ€ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ риска рСцидивирования. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ стСпСни вовлСчСния ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ диагностичСская Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Π΅Ρ‘ ΠΎΠ±ΠΌΠ΅Π½Π° (оксипролина ΠΈ Π³Π»ΠΈΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΎΠ³Π»ΠΈΠΊΠ°Π½ΠΎΠ²) для Ρ€Π°Π½Π½Π΅ΠΉ диагностики нСфросклСроза Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… хроничСским ΠΏΠΈΠ΅Π»ΠΎΠ½Π΅Ρ„Ρ€ΠΈΡ‚ΠΎΠΌ, Ρ€Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ остСодистрофии Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с хроничСской ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, патологичСских процСссов Ρ€Π°Π·Π½ΠΎΠΉ интСнсивности Π² ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ΅; Ρ€ΠΎΠ»ΡŒ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ΅ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Ρƒ подростков с Π΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ язвой, Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ ΠΈ остСопСниСй Π½Π° Ρ„ΠΎΠ½Π΅ Π½Π΅Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ дисплазии ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π”ΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования оксипролина, Π³Π»ΠΈΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΎΠ³Π»ΠΈΠΊΠ°Π½ΠΎΠ² ΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠ°ΠΌ ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π° Π² качСствС молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² для диагностики донозологичСских состояний ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ популяционного Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ.Dissertation is devoted to solving the urgent problem of establishing the role of the stereotypical reactions of connective tissue as a physiological system in the development of the pathological processes. General principles for the assessment of the physiological system of connective tissue are formulated, and its role in the development of the pathological processes in the parenchymatous organs (kidney, liver, pancreas) and bone is determined. We first studied the role of regulatory path RANK-RANKL-OPG in experimental modeling of renal diseases, its activation and the relationship with pro- and anti-inflammatory cytokines, including a positive correlation between RANKL and profibrogenic TGF-Ξ²1 (r = 0,61). New pathogenetic mechanisms of disturbances of condition of bone tissue are identified and development of fibrosis of the liver and pancreas, associated with a decrease in the functional activity of platelets is made. It is established that the hemostasis mechanisms influence the activation of proliferative processes in the connective tissue. Possibility of transferring the data on the person was specified on the clinical material. Role of the state of the physiological system of connective tissue in the development of complications and recurrences in patients with hydronephrotic transformation of the kidneys is detected; activation regulatory path RANKRANKL-OPG in patients with hydronephrosis is established. Interrelation of the various mechanisms of regulation of the physiological system of connective tissue in the development of pathology of the pancreatoduodenal zones’ organs is shown. Based on the assessment of the physiological system of connective tissue the methods for predicting surgical complications and recurrence of the disease are proposed. Conducted meta-analysis of the obtained data, on the basis of which with the help of factor analysis, the main groups of indicators (factors) are established, which reflect the main directions of the pathological process, mediated reactions in physiological system of the connective tissue. Augmented scientific data on the mechanisms of chronization of the pathological process in diseases of the kidneys is supplemented; it is shown that changes of the functional state of the connective tissue can be quantitatively recorded even in the case of a sluggish pathological process in the small mass organ. Augmented scientific data on the role and degree of involvement of the regulatory function damages of the physiological system of connective tissue in the development of diseases of the gastrointestinal tract, including duodenal ulcer is supplemented. Role and significance of the decline in physiological reserves of the physiological system of connective tissue to increase the risk of morbidity in the population is shown. Method of risk assessment for population health based on the analysis of physiological reserves of the physiological system of the connective tissue is proposed

    Visualization and Quantitative Analysis of G Protein-Coupled Receptorβˆ’Ξ²-Arrestin Interaction in Single Cells and Specific Organs of Living Mice Using Split Luciferase Complementation

    No full text
    Methods used to assess the efficacy of potentially therapeutic reagents for G protein-coupled receptors (GPCRs) have been developed. Previously, we demonstrated sensitive detection of the interaction of GPCRs and Ξ²-arrestin2 (ARRB2) using 96-well microtiter plates and a bioluminescence microscope based on split click beetle luciferase complementation. Herein, using firefly luciferase emitting longer wavelength light, we demonstrate quantitative analysis of the interaction of Ξ²2-adrenergic receptor (ADRB2), a kind of GPCR, and ARRB2 in a 96-well plate assay with single-cell imaging. Additionally, we showed bioluminescence <i>in vivo</i> imaging of the ADRB2–ARRB2 interaction in two systems: cell implantation and hydrodynamic tail vein (HTV) methods. Specifically, in the HTV method, the luminescence signal from the liver upon stimulation of an agonist for ADRB2 was obtained in the intact systems of mice. The results demonstrate that this method enables noninvasive screening of the efficacy of chemicals at the specific organ in <i>in vivo</i> testing. This <i>in vivo</i> system can contribute to effective evaluation in pharmacokinetics and pharmacodynamics and expedite the development of new drugs for GPCRs

    Fluorescent Probes for Imaging Endogenous Ξ²-Actin mRNA in Living Cells Using Fluorescent Protein-Tagged Pumilio

    No full text
    Subcellular localization and dynamics of mRNAs control various physiological functions in living cells. A novel technique for visualizing endogenous mRNAs in living cells is necessary for investigation of the spatiotemporal movement of mRNAs. A pumilio homology domain of human pumilio 1 (PUM-HD) is a useful RNA binding protein as a tool for mRNA recognition because the domain can be modified to bind a specific 8-base sequence of target mRNA. In this study, we designed PUM-HD to match the sequence of Ξ²-actin mRNA and developed an mRNA probe consisting of two PUM-HD mutants flanking full-length enhanced green fluorescent protein (EGFP). Fluorescence microscopy with the probe in living cells revealed that the probe was labeled precisely with the Ξ²-actin mRNA in cytosol. Fluorescent spots from the probe were colocalized with microtubules and moved directionally in living cells. The PUM-HD mutants conjugated with full-length EGFP can enable visualization of Ξ²-actin mRNA localization and dynamics in living cells

    Measuring CREB Activation Using Bioluminescent Probes That Detect KID–KIX Interaction in Living Cells

    No full text
    The cyclic adenosine monophosphate response element-binding protein (CREB) is a transcription factor that contributes to memory formation. The transcriptional activity of CREB is induced by its phosphorylation at Ser-133 and subsequent interaction with the CREB-binding protein (CBP)/p300. We designed and optimized firefly split luciferase probe proteins that detect the interaction of the kinase-inducible domain (KID) of CREB and the KIX domain of CBP/p300. The increase in the light intensity of the probe proteins results from the phosphorylation of the responsible serine corresponding to Ser-133 of CREB. Because these proteins have a high signal-to-noise ratio and are nontoxic, it has become possible for the first time to carry out long-term measurement of KID–KIX interaction in living cells. Furthermore, we examined the usefulness of the probe proteins for future high-throughput cell-based drug screening and found several herbal extracts that activated CREB

    Simultaneous Time-Lamination Imaging of Protein Association Using a Split Fluorescent Timer Protein

    No full text
    Studies of temporal behaviors of protein association in living cells are crucially important for elucidating the fundamental roles and the mechanism of interactive coordination for cell activities. We developed a method for investigating the temporal alternation of a particular protein assembly using monomeric fluorescent proteins, fluorescent timers (FTs), of which the fluorescent color changes from blue to red over time. We identified a dissection site of the FTs, which allows complementation of the split FT fragments. The split fragments of each FT variant recovered their fluorescence and maintained inherent rates of the color changes upon the reassembly of the fragments in vitro. We applied this method to visualize the aggregation process of Ξ±-synuclein in living cells. The size of the aggregates with the temporal information was analyzed from ratio values of the blue and red fluorescence of the reconstituted FTs, from which the aggregation rates were evaluated. This method using the split FT fragments enables tracing and visualizing temporal alternations of various protein associations by single fluorescence measurements at a given time point

    Bioluminescent Indicator for Highly Sensitive Analysis of Estrogenic Activity in a Cell-Based Format

    No full text
    Estrogens regulate different physiological systems with wide ranges of concentrations. The rapid analysis of estrogens is crucially important for drug discovery and medical diagnosis, but quantitation of nanomolar estrogens in live cells persists as an important challenge. We herein describe a bioluminescent indicator used to detect low concentrations of estrogens quantitatively with a high signal-to-background ratio. The indicator comprises a ligand-binding domain of an estrogen receptor connected with its binding peptide, which is sandwiched between split fragments of a luciferase mutant. Results show that the indicator recovered its bioluminescence upon binding to 17Ξ²-estradiol at concentrations higher than 1.0 Γ— 10<sup>–10</sup> M. The indicator was reactive to agonists but did not respond to antagonists. The indicator is expected to be applicable for rapid screening estrogenic compounds and inhibitors, facilitating the discovery of drug candidates in a high-throughput manner

    Spectral Mining for Discriminating Blood Origins in the Presence of Substrate Interference via Attenuated Total Reflection Fourier Transform Infrared Spectroscopy: Postmortem or Antemortem Blood?

    No full text
    Often in criminal investigations, discrimination of types of body fluid evidence is crucially important to ascertain how a crime was committed. Compared to current methods using biochemical techniques, vibrational spectroscopic approaches can provide versatile applicability to identify various body fluid types without sample invasion. However, their applicability is limited to pure body fluid samples because important signals from body fluids incorporated in a substrate are affected strongly by interference from substrate signals. Herein, we describe a novel approach to recover body fluid signals that are embedded in strong substrate interferences using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and an innovative multivariate spectral processing. This technique supported detection of covert features of body fluid signals, and then identified origins of body fluid stains on substrates. We discriminated between ATR FT-IR spectra of postmortem blood (PB) and those of antemortem blood (AB) by creating a multivariate statistics model. From ATR FT-IR spectra of PB and AB stains on interfering substrates (polyester, cotton, and denim), blood-originated signals were extracted by a weighted linear regression approach we developed originally using principal components of both blood and substrate spectra. The blood-originated signals were finally classified by the discriminant model, demonstrating high discriminant accuracy. The present method can identify body fluid evidence independently of the substrate type, which is expected to promote the application of vibrational spectroscopic techniques in forensic body fluid analysis

    Bioluminescent Probes to Analyze Ligand-Induced Phosphatidylinositol 3,4,5-Trisphosphate Production with Split Luciferase Complementation

    No full text
    A lipid second messenger, phosphatidylinositol (3,4,5)-trisphosphate (PIP<sub>3</sub>), is a signaling molecule that mediates central cellular events, such as growth, motility, and development by activating downstream proteins. Although functions of various PIP<sub>3</sub> binding partners have been unveiled, the various roles of PIP<sub>3</sub> have not been resolved thoroughly because of limitations of PIP<sub>3</sub> analysis. Herein, we describe a novel method for the analysis of relative PIP<sub>3</sub> amount based on spontaneous complementation of split luciferase fragments. An N-terminal fragment of a luciferase was located on the plasma membrane (LucN-pm). A C-terminal fragment of a luciferase fused with PIP<sub>3</sub> binding units, pleckstrin homology domains (PHDs) of the general receptor for phosphoinositides 1 (GRP1), was expressed in cytosol (PP-LucC). In response to PIP<sub>3</sub> production, PP-LucC was brought to the plasma membrane and colocalized with LucN-pm. The LucN-pm and PP-LucC reconstituted spontaneously to form an active luciferase, producing bioluminescence recovery. We obtained bioluminescence signals corresponding to relative PIP<sub>3</sub> amounts successfully upon stimulation with an agonist. We also demonstrated that the probes were applied for a high-throughput screening format and for monitoring of PIP<sub>3</sub> production on the plasma membrane by bioluminescence. This method enables further study of PIP<sub>3</sub> and supports versatile applications related to the PIP<sub>3</sub> amount

    MOESM1 of Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift

    No full text
    Additional file 1: Figure S1. The stability test of our Raman setup over 6 hour’s measurement. Figure S2. The raw data without fluorescence background subtraction calculations for the data shown in Fig.Β 2. Figure S3. The TEM images of microalgal cells under different stress conditions

    Heat shock factor 1 (HSF1) interacts with BMAL1:CLOCK after the heat shock (HS) pulse.

    No full text
    <p>Wild-type (WT) mouse embryonic fibroblasts (MEFs) were treated with or without an HS pulse. At 24 h after the HS pulse, the lysates were subjected to immunoblotting for PER2, HSP70, BMAL1, HSF1, and actin. Representative images from triplicate independent experiments are shown (<b>A</b>). WT and <i>Hsf1</i><sup>βˆ’/βˆ’</sup> MEFs were treated with the HS pulse. At the indicated times after the HS pulse, the lysates (<b>B</b>) and BMAL1/HSF1 immunoprecipitates (<b>D; CoIP</b>) were subjected to immunoblotting for PER2, HSP70, BMAL1, HSF1, CLOCK, and actin. Representative images from triplicate independent experiments are shown. Normalized PER2 and HSP70 protein levels (<b>B</b>; at 26 h after the HS pulse), and BMAL1 coimmunoprecipitated with HSF1 and CLOCK (<b>D</b>) are shown as average values from triplicate independent experiments. Error bars indicate standard deviation (SD) (*** P<0.001). (<b>C</b>) WT and <i>Hsf1</i><sup>βˆ’/βˆ’</sup> MEFs were treated with the HS pulse. At the indicated times after the HS pulse, the lysates were subjected to immunoblotting for PER2, HSP70, BMAL1, HSF1, and actin. Representative images from triplicate independent experiments are shown. Normalized circadian PER2 and HSP70 protein profiles plotted with average values from triplicate independent experiments are shown and error bars indicate SD.</p
    corecore