2,274 research outputs found

    On the energy-shell contributions of the three-particle~-~ three-hole excitations

    Get PDF
    The response functions for the extended second and third random phase approximation are compared. A second order perturbation calculation shows that the first-order amplitude for the direct 3p3h3p3h excitation from the ground state cancels with those that are engendered by the 1p1h1p1h-3p3h3p3h coupling. As a consequence nonvanishing 3p3h3p3h effects to the 1p1h1p1h response involve off energy shell renormalization only. On shell 3p3h3p3h processes are absent.Comment: 12 pages text (LaTex) and 1 figure included, to be published in Phys. Rev.

    Momentum Distribution in Nuclear matter within a Perturbation Approximation

    Full text link
    It is shown that the norm corrections, introduced to avoid the violation of the constraints on the depletion of the hole states in the standard perturbative 2p2h approach, leads in nuclear matter to a dependence of the momentum distribution with the total nucleon number. This unphysical behavior, which in turn makes the depletion to be non-extensive, arises from contributions of disconnected diagrams contained in the norm. It is found that the extensivity is again recovered when the 4p4h excitations in the ground state are included, and a reasonable value for the total number of nucleons promoted above the Fermi level is obtained.Comment: 11 pages, LaTeX, 5 figures, figures 1 to 3 included in the latex file, postscript files of figures 4 and 5 available from the Authors. Accepted for publication in Phys. Rev.

    Notes on S-Matrix of Non-critical N=2 String

    Full text link
    In this paper we discuss the scattering S-matrix of non-critical N=2 string at tree level. First we consider the \hat{c}<1 string defined by combining the N=2 time-like linear dilaton SCFT with the N=2 Liouville theory. We compute three particle scattering amplitudes explicitly and find that they are actually vanishing. We also find an evidence that this is true for higher amplitudes. Next we analyze another \hat{c}<1 string obtained from the N=2 time-like Liouville theory, which is closely related to the N=2 minimal string. In this case, we find a non-trivial expression for the three point functions. When we consider only chiral primaries, the amplitudes are very similar to those in the (1,n) non-critical bosonic string.Comment: 27 pages, harvmac, section 5 modified: a relation to (1,n) non-critical bosonic string adde

    On the Connection between N=2 Minimal String and (1,n) Bosonic Minimal String

    Full text link
    We study the scattering amplitudes in the N=2 minimal string or equivalently in the N=4 topological string on ALE spaces. We find an interesting connection between the tree level amplitudes of the N=2 minimal string and those of the (1,n) minimal bosonic string. In particular we show that the four and five-point functions of the N=2 string can be directly rewritten in terms of those of the latter theory. This relation offers a map of physical states between these two string theories. Finally we propose a possible matrix model dual for the N=2 minimal string in the light of this connection.Comment: 40 pages, one figure, harvmac, minor corrections, references adde

    A holographic proof of the strong subadditivity of entanglement entropy

    Full text link
    When a quantum system is divided into subsystems, their entanglement entropies are subject to an inequality known as "strong subadditivity". For a field theory this inequality can be stated as follows: given any two regions of space AA and BB, S(A)+S(B)≥S(A∪B)+S(A∩B)S(A) + S(B) \ge S(A \cup B) + S(A \cap B). Recently, a method has been found for computing entanglement entropies in any field theory for which there is a holographically dual gravity theory. In this note we give a simple geometrical proof of strong subadditivity employing this holographic prescription.Comment: 9 pages, 3 figure

    Analysis of exchange terms in a projected ERPA Theory applied to the quasi-elastic (e,e') reaction

    Get PDF
    A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to quasi-elastic (e,e') reactions is presented. The study is performed within the framework of the extended random phase approximation (ERPA), which in conjuction with a projection method permits a separation of various contributions tied to different physical processes. The calculations are performed in nuclear matter up to second order in the residual interaction for which we take a (pi+rho)-model with the addition of the Landau-Migdal g'-parameter. Exchange terms are found to be important only for the RPA-type contributions around the quasielastic peak.Comment: 29 pages, 6 figs (3 in postscript, 3 faxed on request), epsf.st

    D-Brane Probe and Closed String Tachyons

    Full text link
    We consider a D-brane probe in unstable string background associated with flux branes. The twist in spacetime metric reponsible for the supersymmetry breaking is shown to manifest itself in mixing of open Wilson lines with the phases of some adjoint matter fields, resulting in a nonlocal and nonsupersymmetric form of Yang-Mills theory as the probe dynamics. This provides a setup where one can study fate of a large class of unstable closed string theories that include as a limit type 0 theories and various orbifolds of type II and type 0 theories. We discuss the limit of C/Zn{\bf C}/Z_n orbifold in some detail and speculate on couplings with closed string tachyons.Comment: LaTeX, 17 pages, typos fixed, references update

    Ultracold collisions between two light indistinguishable diatomic molecules: elastic and rotational energy transfer in HD+HD

    Full text link
    A close coupling quantum-mechanical calculation is performed for rotational energy transfer in a HD+HD collision at very low energy, down to the ultracold temperatures: T∼10−8T \sim 10^{-8} K. A global six-dimensional H2_2-H2_2 potential energy surface is adopted from a previous work [Boothroyd {\it et al.}, J. Chem. Phys., {\bf 116}, 666 (2002).] State-resolved integral cross sections σij→i′j′(εkin)\sigma_{ij\rightarrow i'j'}(\varepsilon_{kin}) of different quantum-mechanical rotational transitions ij→i′j′ij\rightarrow i'j' in the HD molecules and corresponding state-resolved thermal rate coefficients kij→i′j′(T)k_{ij\rightarrow i'j'}(T) have been computed. Additionally, for comparison, H2_2+H2_2 calculations for a few selected rotational transitions have also been performed. The hydrogen and deuterated hydrogen molecules are treated as rigid rotors in this work. A pronounced isotope effect is identified in the cross sections of these collisions at low and ultracold temperatures.Comment: 9 pages, 9 figures. Accepted for publication in Physical Review
    • …
    corecore