9 research outputs found

    Extended collimator model for pencil-beam dose calculation in proton radiotherapy

    Get PDF
    We have developed a simple collimator model to improve the accuracy of penumbra behaviour in pencil-beam dose calculation for proton radiotherapy. In this model, transmission of particles through a three-dimensionally extended opening of a collimator is calculated in conjunction with phase-space distribution of the particles. Comparison of the dose distributions calculated using the new three-dimensional collimator model and the conventional twodimensional model to lateral dose profiles experimentally measured with collimated proton beams showed the superiority of the new model over the conventional one

    Molecular characterization of Mycobacterium bovis infection in cattle and buffalo in Amazon Region, Brazil

    Get PDF
    The aim of this study was to characterize Mycobacterium bovis from cattle and buffalo tissue samples, from two Brazilian states, and to analyse their genetic diversity by spoligotyping. Tissue samples from tuberculosis suspect animals, 57 in Amazonas State (12 cattle and 45 buffaloes) and six from Pará State (5 cattle and one buffalo) from slaughterhouses under State Veterinary Inspection, were isolated in culture medium Stonebrink. The positive cultures were confirmed by PCR and analysed by the spoligotyping technique and the patterns (spoligotypes) were identified and compared at the Mycobacterium bovis Spoligotype Database (http://www.mbovis.org/). There was bacterial growth in 44 (69.8%) of the tissues of the 63 animals, of which PCR for region of differentiation 4 identified 35/44 (79.5%) as Mycobacterium bovis. Six different spoligotypes were identified among the 35 Mycobacterium bovis isolates, of which SB0295, SB1869, SB0121 and SB1800 had already been described in Brazil, and SB0822 and SB1608 had not been described. The most frequent spoligotype in this study (SB0822) had already been described in buffaloes in Colombia, a neighbouring country of Amazonas state. The other identified spoligotypes were also described in other South American countries, such as Argentina and Venezuela, and described in the Brazilian states of Rio Grande do Sul, Santa Catarina, São Paulo, Minas Gerais, Mato Grosso do Sul, Mato Grosso and Goiás, indicating an active movement of Mycobacterium bovis strains within Brazil.Instituto de BiotecnologíaFil: Carneiro, Paulo A. M. Michigan State University. Center for Comparative Epidemiology; Estados UnidosFil: Pasquatti, Taynara N. Dom Bosco Catholic University; BrasilFil: Takatani, Haruo. Agencia de Defesa Agropecuaria do Amazonas; BrasilFil: Zumarraga, Martin Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Marfil, Maria Jimena. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Barnard, Christian. Agencia de Defesa Agropecuaria do Amazonas; BrasilFil: Fitzgerald, Scott D. Michigan State University. Veterinary Diagnostic Laboratory; Estados UnidosFil: Abramovitch, Robert B. Michigan State University. Department of Microbiology and Molecular Genetics; Estados UnidosFil: Araujo, Flabio Ribeiro de. Centro Nacional de Pesquisa de Gado de Corte; BrasilFil: Kaneene, John B. Michigan State University. Center for Comparative Epidemiology; Estados Unido

    Matrix assisted laser desorption ionization-time-of-flight mass spectrometry identification of mycobacterium bovis in bovinae

    Get PDF
    In this study, Matrix Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-TOF) mass spectrometry was used to identify Mycobacterium bovis from cattle and buffalo tissue isolates from the North and South regions of Brazil, grown in solid medium and previously identified by Polymerase Chain Reaction (PCR) based on Region of Difference 4 (RD4), sequencing and spoligotyping. For this purpose, the protein extraction protocol and the mass spectra reference database were optimized for the identification of 80 clinical isolates of mycobacteria. As a result of this optimization, it was possible to identify and differentiate M. bovis from other members of the Mycobacterium tuberculosis complex with 100% specificity, 90.91% sensitivity and 91.25% reliability. MALDI-TOF MS methodology described herein provides successful identification of M. bovis within bovine/bubaline clinical samples, demonstrating its usefulness for bovine tuberculosis diagnosis in the future.Instituto de BiotecnologíaFil: Bacanelli, Gisele. Federal University of Mato Grosso do Sul. Biotechnology and Biodiversity of the Central Western Region Postgraduate Program; BrasilFil: Olarte, Larissa C. Federal University of Mato Grosso do Sul. Biochemistry and Molecular Biology Multicentric Postgraduate Program; BrasilFil: Silva, Marcio Roberto. Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Gado de Leite; BrasilFil: Rodrigues, Rudielle A. Federal University of Mato Grosso do Sul. Faculty of Veterinary Medicine. Veterinary Sciences Postgraduate Program; BrasilFil: Carneiro, Paulo A. M. Michigan State University. Center for Comparative Epidemiology; Estados UnidosFil: Kannene, John B. Michigan State University. Center for Comparative Epidemiology; Estados UnidosFil: Pasquatti, Taynara N. Dom Bosco Catholic University; BrasilFil: Takatani, Haruo. Agricultural Defense Agency of Amazonas; BrasilFil: Zumarraga, Martin Jose. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; ArgentinaFil: Etges, Rodrigo N. Secretary of Agriculture, Livestock and Irrigation; BrasilFil: Araujo, Flabio Ribeiro de. Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Gado de Corte; BrasilFil: Verbisck, Newton V. Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Gado de Corte; Brasi

    Larval pufferfish protected by maternal tetrodotoxin

    Get PDF
    Marine pufferfish contain tetrodotoxin (TTX), an extremely potent neurotoxin. All species of the genus Takifugu accumulate TTX in the liver and ovaries, although the tissue(s) in which it is localized can differ among species. TTX is the major defense strategy the pufferfish appears to use against predators. TTX is also used as a male-attracting pheromone during spawning. Here we demonstrate an additional (and unexpected) use of maternal TTX in the early larval stages of the Takifugu pufferfish. Predation experiments demonstrated that juveniles of all the species of fish used as predators ingested pufferfish larvae, but spat them out promptly. Liquid Chromatography-Tandem Mass Spectrometry (LC-MSMS) analysis revealed that the pufferfish larvae contain a small quantity of TTX, which is not enough to be lethal to the predators. Immunohistochemical analysis with anti-TTX monoclonal antibody revealed that the TTX is primarily localized in the body surface of the larvae as a layer of protection. Our study showed the female parent of the Takifugu pufferfish vertically transfers TTX to the larvae through its accumulation in the ovaries, and subsequent localization on the body surface of the larvae

    Local Differences in the Toxin Amount and Composition of Tetrodotoxin and Related Compounds in Pufferfish (Chelonodon patoca) and Toxic Goby (Yongeichthys criniger) Juveniles

    No full text
    Tetrodotoxin (TTX)-bearing fish ingest TTX from their preys through the food chain and accumulate TTX in their bodies. Although a wide variety of TTX-bearing organisms have been reported, the missing link in the TTX supply chain has not been elucidated completely. Here, we investigated the composition of TTX and 5,6,11-trideoxyTTX in juveniles of the pufferfish, Chelonodon patoca, and toxic goby, Yongeichthys criniger, using LC–MS/MS, to resolve the missing link in the TTX supply chain. The TTX concentration varied among samples from different localities, sampling periods and fish species. In the samples from the same locality, the TTX concentration was significantly higher in the toxic goby juveniles than in the pufferfish juveniles. The concentration of TTX in all the pufferfish juveniles was significantly higher than that of 5,6,11-trideoxyTTX, whereas the compositional ratio of TTX and 5,6,11-trideoxyTTX in the goby was different among sampling localities. However, the TTX/5,6,11-trideoxyTTX ratio in the goby was not different among samples collected from the same locality at different periods. Based on a species-specific PCR, the detection rate of the toxic flatworm (Planocera multitentaculata)-specific sequence (cytochrome c oxidase subunit I) also varied between the intestinal contents of the pufferfish and toxic goby collected at different localities and periods. These results suggest that although the larvae of the toxic flatworm are likely to be responsible for the toxification of the pufferfish and toxic goby juveniles by TTX, these fish juveniles are also likely to feed on other TTX-bearing organisms depending on their habitat, and they also possess different accumulation mechanisms of TTX and 5,6,11-trideoxyTTX
    corecore