15 research outputs found

    Foot Deformity Correction with Hexapod External Fixator, the Ortho-SUV Frameâ„¢

    Get PDF
    External fixators enable distraction osteogenesis and gradual foot deformity corrections. Hexapod fixators have become more popular than the Ilizarov apparatus. The Ortho-SUV Frame™ (OSF; Ortho-SUV Ltd, St. Petersburg, Russia), a hexapod that was developed in 2006, allows flexible joint attachment such that multiple assemblies are available. We assessed the reduction capability of several assemblies. An artificial bone model with a 270-mm-long longitudinal foot was used. A 130-mm tibial full ring was attached 60 mm proximal to the ankle joint. A 140-mm, two-third ring forefoot was attached perpendicular to the metatarsal bone axis. A 130-mm, two-third ring hindfoot was attached parallel to the tibial ring. A V-osteotomy, which was combined with 2 oblique osteotomies at the navicular-cuboid bone and the calcaneus, was performed. The middle part of the foot, including the talus, was connected to the tibial ring. We assessed 5 types of forefoot applications and 4 types of hindfoot applications. The range of correction included flexion/extension in the sagittal plane, adduction/abduction in the horizontal plane, and pronation/supination in the coronal plane. Additionally, we reported the short-term results in 9 clinical cases. The forefoot applications in which the axis of the hexapod was parallel to the axis of the metatarsal bones had good results, with 52°/76° for flexion/extension, 48°/53° for adduction/abduction, and 43°/51° for pronation/supination. The hindfoot applications in which the hexapod encircled the ankle joint also had good results, with corresponding values of 47°/58°, 20°/35°, and 28°/31°. Clinically, all deformities were corrected as planned. Thus, multiple assemblies and a wide range of corrections are available with the OSF. © 2013 American College of Foot and Ankle Surgeons

    Activity of bone morphogenetic protein-7 after treatment at various temperatures: Freezing vs. pasteurization vs. allograft

    Get PDF
    Insufficient bone union is the occasional complication of biomechanical reconstruction after malignant bone tumor resection using temperature treated tumor bearing bone; freezing, pasteurization, and autoclaving. Since bone morphogenetic protein (BMP) plays an important role in bone formation, we assessed the amount and activity of BMP preserved after several temperature treatments, including -196 and -73 °C for 20 min, 60 and 100 °C for 30 min, 60 °C for 10 h following -80 °C for 12 h as an allograft model, and 4 °C as the control. The material extracted from the human femoral bone was treated, and the amount of BMP-7 was analyzed using an enzyme-linked immunosorbent assay. Then, the activity of recombinant human BMP-7 after the treatment was assessed using a bioassay with NIH3T3 cells and immunoblotting analysis to measure the amount of phospho-Smad, one of the signaling substrates that reflect the intracellular reaction of BMPs. Both experiments revealed that BMP-7 was significantly better preserved in the hypothermia groups. The percentages of the amount of BMP-7 in which the control group was set at 100% were 114%, 108%, 70%, 49%, and 53% in the -196, -73, 60, 100 °C, and the allograft-model group, respectively. The percentages of the amount of phospho-Smad were 89%, 87%, 24%, 4.9%, and 14% in the -196, -73, 60, 100 °C, and the allograft-model group, respectively. These results suggested that freezing possibly preserves osteoinductive ability than hyperthermia treatment. © 2011 Elsevier Inc. All rights reserved

    Lengthening for functional acetabular dysplasia due to limb length discrepancy: A report of two cases

    No full text
    Osteoarthritis of the hip joint as a complication of limb length discrepancy (LLD) caused by lower extremity deformity is rarely reported in the literature. We report two such cases of osteoarthritic changes of the long leg hip joint due to severe LLD but no developmental dysplasia of the hip. Both underwent limb lengthening, and the symptoms were improved without further treatment. The osteoarthritic changes are secondary to functional acetabular dysplasia resulting in insufficient acetabular coverage of the femoral head and lateral inclination of the pelvis caused by LLD. Thus, lengthening treatment may be one option for such patients with osteoarthritis due to functional acetabular dysplasia

    Spring technique for correction of multilevel deformity using hexapod external fixator

    No full text
    Context: Osteotomies in several parts of one long bone are recommended for correction of a long, curved, and wide-angled deformity. Hexapod external fixators (HEFs) allow for the single-stage correction of multiplanar deformity, but they are heavy, expensive, and requires continuous management of 12 struts, if at more than one level. Aims: We proposed the use of springs with HEF to support the intermediate ring. Deformity between the proximal and distal rings is corrected using one HEF, and the intermediate fragment is automatically corrected by the tension of the springs. Settings and Design: This was a retrospective descriptive study. Subjects and Methods: We treated seven males and eight females with 17 affected limbs. Four patients with familial hypophosphatemic rickets, five posttraumatic deformities, two osteogenesis imperfectas, three fibrous dysplasias, and one neurofibromatosis were included. The mean preoperative angle between the most proximal and distal fragments was 62.5°. First, small distraction at each level was initiated with one HEF fixed to the most proximal and distal rings, and Ilizarov hinges applied between the proximal and intermediate rings. Then, a set of three springs was applied for each interval between the rings. Gradual correction using HEF was performed, considering only the axes of the proximal and distal bone fragments. Results: Good alignment was achieved in all patients without severe complications. The mean correction period was 5.5 weeks and mean fixation period was 33.8 weeks. Conclusion: Combination of HEF and springs is capable of correcting severe deformity

    TNF-α and tumor lysate promote the maturation of dendritic cells for immunotherapy for advanced malignant bone and soft tissue tumors.

    Get PDF
    BACKGROUND: Dendritic cells (DCs) play a pivotal role in the immune system. There are many reports concerning DC-based immunotherapy. The differentiation and maturation of DCs is a critical part of DC-based immunotherapy. We investigated the differentiation and maturation of DCs in response to various stimuli. METHODS: Thirty-one patients with malignant bone and soft tissue tumors were enrolled in this study. All the patients had metastatic tumors and/or recurrent tumors. Peripheral blood mononuclear cells (PBMCs) were suspended in media containing interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF). These cells were then treated with or without 1) tumor lysate (TL), 2) TL + TNF-α, 3) OK-432. The generated DCs were mixed and injected in the inguinal or axillary region. Treatment courses were performed every week and repeated 6 times. A portion of the cells were analyzed by flow cytometry to determine the degree of differentiation and maturation of the DCs. Serum IFN-γ and serum IL-12 were measured in order to determine the immune response following the DC-based immunotherapy. RESULTS: Approximately 50% of PBMCs differentiated into DCs. Maturation of the lysate-pulsed DCs was slightly increased. Maturation of the TL/TNF-α-pulsed DCs was increased, commensurate with OK-432-pulsed DCs. Serum IFN-γ and serum IL-12 showed significant elevation at one and three months after DC-based immunotherapy. CONCLUSIONS: Although TL-pulsed DCs exhibit tumor specific immunity, TL-pulsed cells showed low levels of maturation. Conversely, the TL/TNF-α-pulsed DCs showed remarkable maturation. The combination of IL-4/GM-CSF/TL/TNF-α resulted in the greatest differentiation and maturation for DC-based immunotherapy for patients with bone and soft tissue tumors
    corecore