508 research outputs found

    Cdc42 is required for male germline niche development in mice

    Get PDF
    精子形成促進分子GDNFの制御機構の解明 --男性不妊治療への応用に期待--. 京都大学プレスリリース. 2021-08-19.Spermatogonial stem cells (SSCs) are maintained in a special microenvironment called a niche. However, much is unknown about components that constitute the niche. Here, we report that Cdc42 is essential for germline niche development. Sertoli cell-specific Cdc42-deficient mice showed normal premeiotic spermatogenesis. However, germ cells gradually disappeared during haploid cell formation and few germ cells remained in the mature testes. Spermatogonial transplantation experiments revealed a significant loss of SSCs in Cdc42-deficient testes. Moreover, Cdc42 deficiency in Sertoli cells downregulated GDNF, a critical factor for SSC maintenance. Cdc42-deficient Sertoli cells also exhibited lower nuclear MAPK1/3 staining. Inhibition of MAP2K1 or depletion of Pea15a scaffold protein downregulated GDNF expression. A screen of transcription factors revealed that Cdc42-deficient Sertoli cells downregulate DMRT1 and SOX9, both of which are critical for Sertoli cell development. These results indicate that Cdc42 is essential for niche function via MAPK1/3-dependent GDNF secretion

    Aplicación de secciones transversales pulidas y observación FE-SEM de relevantes generados a partir de flotación de minerales

    Get PDF
    Fine particles in tailings generated from the flotation of ores were observed. By using Field-emission scanning electron microscopy (FE-SEM), the fine particles were observed at submicron level with high resolution. For the cross section observation, the tailing samples were prepared by cross section polishing. With the combination of these techniques, we determined the distributions of the heavy metals and metalloids in the fine particles. As a result, when the particle surfaces were observed, the detection of Pb, Sb, Fe and/or As indicated that these elements coexist or separately exist in the 1−3 μm fine particles. In the cross section observation, the concentrations of Zn and Fe were found to be different in the particles.Se obsevaron partículas finas en relaves generados a partir de la flotación de minerales. Mediante el uso de barrido de emisión de campo (FE-SEM), se observaron las partículas finas a nivel submicrónico con alta resolución. Para la observación de la sección transversal, las muestras de relaves fueron preparados por la sección pulida. Con la combinación de estas técnicas, se determinó la distribución de los metales pesados y metaloides en las partículas finas. Como resultado, cuando se observaron las superficies de las partículas, la detección de Pb, Sb, Fe como se indica que estos elementos coexisten o existen por separado en las partículas finas 1-3um. En la observación de la sección transversal, se encontró que las concentraciones de Zn y Fe diferente en las partículas

    Reconstitution of Mouse Spermatogonial Stem Cell Niches in Culture

    Get PDF
    SummarySpermatogonial stem cells (SSCs) reside in specific niches within seminiferous tubules. These niches are thought to secrete chemotactic factors for SSCs, because SSCs migrate to them upon transplantation. However, the identity of these chemotactic molecules remains unknown. Here, we established a testis feeder cell culture system and used it to identify SSC chemotactic factors. When seeded on testis cells from infertile mice, SSCs migrated beneath the Sertoli cells and formed colonies with a cobblestone appearance that were very similar to those produced by hematopoietic stem cells. Cultured cells maintained SSC activity and fertility for at least 5 months. Cobblestone colony formation depended on GDNF and CXCL12, and dominant-negative GDNF receptor transfection or CXCL12 receptor deficiency reduced SSC colonization. Moreover, GDNF upregulated CXCL12 receptor expression, and CXCL12 transfection in Sertoli cells increased homing efficiency. Overall, our findings identify GDNF and CXCL12 as SSC chemotactic factors in vitro and in vivo

    Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Get PDF
    Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA) that has α-cyclodextrin (α-CD) as a host molecule (α-CD-CTA). Prior to the polymerization of N,N-dimethylacrylamide (DMA), we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2\u27-azobis[2-(2-imidazolin-2-yl)propane dihydrochloride (VA-044) as an initiator in an aqueous solution, poly(DMA) was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol) which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol

    Changes of Blood Flow Volume in the Superior Mesenteric Artery and Brachial Artery with Abdominal Thermal Stimulation

    Get PDF
    In traditional Chinese medicine, moxibustion is a local thermal therapy that is used for several conditions. Quantifying the effects of moxibustion therapy has been difficult because the treatment temperature depends on the physician's experience, and the temperature distribution in the target area is not uniform. This prospective observational study aims to quantify the effect of local thermal stimulation to the abdomen. We developed a heat transfer control device (HTCD) for local thermal stimulation. Twenty-four healthy subjects were enrolled and they underwent abdominal thermal stimulation to the para-umbilical region with the device for 20 min. Blood flow volume in the superior mesenteric artery (SMA) and brachial artery (BA), the heart rate and the blood pressure were measured at rest, 15 min after starting thermal stimulation and 10, 20, 30 and 40 min after completing thermal stimulation. Blood flow parameters were measured by high-resolution ultrasound. In the SMA, blood flow volume was significantly increased during thermal stimulation (P < .01), as well as at 10 min (P < .01) and 20 min (P < .05) after stimulation. In the BA, blood flow volume decreased at 40 min after stimulation (P < .01). In conclusion we could quantify the effect of local thermal stimulation with an HTCD and high-resolution ultrasound. Thermal stimulation of the para-umbilical region increased blood flow in the SMA 20 min after stimulation in healthy subjects

    Cathodoluminescene study of Mg implanted GaN: the impact of dislocation on Mg diffusion

    Get PDF
    Magnesium (Mg) ion implanted homoepitaxial GaN layers is investigated by cathodoluminescence (CL) and secondary ion mass spectrometry (SIMS). The impact of dislocations on Mg diffusion is clarified by CL monitoring the Mg-related donor-acceptor pair (DAP) emission on novel angle cutting specimen. CL results suggest that: (1) there exist high concentration of nonradiative defects in a Mg implanted layer; and (2) Mg shows pipe diffusion along threading dislocations throughout epilayer to substrate. To achieve successful Mg doping by ion implantation, it is necessary to suppress the formation of a dead region in the Mg implanted layer and the pipe diffusion along threading dislocations

    Lipid production via simultaneous conversion of glucose and xylose by a novel yeast, Cystobasidium iriomotense

    Get PDF
    バイオマスから油脂を生産する新種の酵母を発見 --油脂製造プロセスの効率化と低炭素社会の実現に貢献--. 京都大学プレスリリース. 2018-10-01.The yeast strains IPM32-16, ISM28-8sT, and IPM46-17, isolated from plant and soil samples from Iriomote Island, Japan, were explored in terms of lipid production during growth in a mixture of glucose and xylose. Phylogenetically, the strains were most closely related to Cystobasidium slooffiae, based on the sequences of the ITS regions and the D1/D2 domain of the LSU rRNA gene. The strains were oleaginous, accumulating lipids to levels > 20% dry cell weight. Moreover, kinetic analysis of the sugar-to-lipid conversion of a 1:1 glucose/xylose mixture showed that the strains consumed the two sugars simultaneously. IPM46-17 attained the highest lipid content (33%), mostly C16 and C18 fatty acids. Thus, the yeasts efficiently converted lignocellulosic sugars to lipids, aiding in biofuel production (which benefits the environment, promotes rural jobs, and strengthens fuel security). The strains constituted a novel species of Cystobasidium, for which we propose the name Cystobasidium iriomotense (type strain ISM28-8sT = JCM 24594T = CBS 15015T)
    corecore