80 research outputs found

    Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    Get PDF
    Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (

    Effects of three silane primers and five adhesive agents on the bond strength of composite material for a computer-aided design and manufacturing system

    Get PDF
    Objective: The objective of this study was to evaluate the effects of combinations of silane primers and adhesive agents on the bond strength of a composite block for a computer-aided design and manufacturing system. Material and Methods: Three silane primers [Clearfil Ceramic Primer (CP), Super-Bond PZ Primer (PZ), and GC Ceramic Primer II (GP)] were used in conjunction with five adhesive agents [G-Premio Bond (P-Bond), Repair Adhe Adhesive (R-Adhesive), Super-Bond D-Liner Dual (SB-Dual), Super-Bond C&B (SB-Self), and SB-Dual without tributylborane derivative (SB-Light)]. The surface of a composite block (Gradia Block) was ground with silicon carbide paper. After treatment with a silane primer, a adhesive agent was applied to each testing specimen. The specimens were then bonded with a light-curing resin composite. After 24 h, the shear bond strength values were determined and compared using a post hoc test (α=0.05, n=8/group). We also prepared control specimens without primer (No primer) and/or without adhesive agent (No adhesive). Results:PZ/SB-Dual and GP/SB-Dual presented the highest bond strength, followed by GP/P-Bond, CP/SB-Dual, CP/R-Adhesive, No primer/SB-Dual, GP/R-Adhesive, CP/P-Bond, No primer/R-Adhesive, PZ/R-Adhesive, CP/SB-Self, PZ/P-Bond, PZ/SB-Self, and GP/SB-Self in descending order of bond strength. No primer/P-Bond, No primer/SB-Self, and all specimens in the SB-Light and No adhesive groups presented the lowest bond strengths. Conclusion: A dual-curing adhesive agent (SB-Dual) containing a tributylborane derivative in combination with a silane primer (GP or PZ) presents a greater bond strength between the composite block and the repairing resin composite than the comparators used in the study

    Clinical considerations for medication-related osteonecrosis of the jaw: a comprehensive literature review

    Get PDF
    Background: Medication-related osteonecrosis of the jaw (MRONJ), which was first reported as bisphosphonaterelated osteonecrosis of the jaw (BRONJ) in bisphosphonate users, is a rare but severe soft and hard tissue disease induced by several types of medications. There has been a deluge of information about MRONJ, such as epidemiology, risk factors, clinical recommendations for dental treatment to prevent it, and treatment strategies in medication-prescribed users. The aim of this study was to comprehensively review recent articles and provide the current scientific information about MRONJ, especially clinical considerations or recommendations for dental treatment to prevent its occurrence.Materials and methods: The current literature review was mainly based on 14 systematic reviews with or without meta-analysis, 4 position papers, 1 consensus statement, 1 clinical guideline, and 2 clinical reviews regarding MRONJ after a PubMed database and manual searches according to inclusion and exclusion criteria. Moreover, 53 articles were selected by manual search in regard to all references from selected articles and other articles identified on the PubMed search, irrespective of publication date, and inclusion and exclusion criteria.Results: The incidence and prevalence of MRONJ are relatively low, although they are clearly higher in cancer patients receiving high-dose antiresorptive agents or angiogenesis inhibitors rather than osteoporosis patients receiving oral bisphosphonates or denosumab. There are many types of local, systemic, and other risk factors for the development of MRONJ. Clinical recommendations are provided for each clinical situation of patients to prevent MRONJ. There are also treatment strategies for MRONJ in each stage.Conclusions: General dentists should perform appropriate dental treatment to prevent MRONJ in the patients prior to or when receiving medications that could induce MRONJ. Moreover, there are treatment strategies for MRONJ in each stage that oral surgeons could follow. Adequate and updated clinical information regarding MRONJ based on scientific data is required whenever possible

    Effect of Macroscopic Grooves on Bone Formation and Osteoblastic Differentiation.

    Get PDF
    Objectives: The aim of this study is to investigate the effect of macroscopic grooves on bone formation in vivo and differentiation of human mesenchymal stem cells (hMSCs) in vitro. Materials and Methods: The effects of macroscopic grooves on titanium alloy implants and disks were tested in rabbit tibiae and cultured hMSCs. The bone-to-implant contact (BIC) and bone area were evaluated in rabbit tibiae at 6 and 24 weeks after implant insertion. Osteoblastic differentiation was assessed by alkaline phosphatase (ALP) activity and real-time reverse-transcription polymerase chain reaction (RT-PCR) on days 7, 14, and 21. All values were statically analyzed. Results: BIC and bone area inside the grooves were significantly higher than those of control implants (P < 0.05). ALP activity was significantly higher for titanium disks with macroscopic grooves than without grooves on day 14 (P < 0.05). Real-time RT-PCR showed that the expression of osteogenic genes was significantly higher for disks with grooves on day 7 (P < 0.01). Conclusions: Macroscopic grooves accelerate osteoblastic differentiation in vitro and stimulate direct bone growth and deposition within the grooves in vivo

    Flexural strength of the joint between glass-infiltrated alumina frames and the alumina-magnesia modifier.

    Get PDF
    PURPOSE: The purpose of the present study was to evaluate the flexural strength of the joint between glass-infiltrated alumina frames and the experimental adjusting agent (MA modifier) that contains alumina and magnesia. METHODS: A commercially available adjusting agent (Optimizer), a slurry of alumina powder (Alumina modifier), and a bulk specimen (joint-free alumina) were used as controls. Beam-shaped alumina specimens were machined from an alumina block. The ends of two alumina beams were positioned at an interval of 1.0mm and joined with each adjusting agent. The joined specimens were subjected to sintering, glass infiltration firing, glass control firing, and then a three-point bending test was carried out to evaluate the flexural strength. RESULTS: The maximum flexural strength was observed in the joint-free alumina, followed by MA modifier, Optimizer and Alumina modifier. With the exception for joint-free alumina, the failure modes after three-point bending test tended to shift from adhesive failure at substrate material-adjusting agent interface to cohesive failure within adjusting agent as the flexural strength increased. CONCLUSIONS: The use of MA modifier significantly improved the flexural strength of joined glass-infiltrated alumina frame. The MA modifier could be applied for adjusting the margin as an alternative to Optimizer when fabricating crown and bridge substructures with In-Ceram Alumina system

    The effect of magnesium oxide supplementation to aluminum oxide slip on the jointing of aluminum oxide bars

    Get PDF
    The purpose of this study was to investigate the effect of modifying aluminum oxide slips with magnesium oxide (MgO) tocreate a jointing material for In-CeramR Alumina. Jointed In-CeramR Alumina bars with In-CeramR Alumina slips containing0-1.0 mass% MgO were examined by a three-point bending test. Joint-free bars were also tested as controls.Fracture surfaces were evaluated by scanning electron microscopy. In addition, linear shrinkage and fracture toughnesswere assessed.  The 0.3 mass% MgO group showed the highest flexural strength among the jointed groups, and there were no statisticaldifferences between the joint-free control groups. The fracture surface of 0.3 mass% MgO group showed increasedsintering densification with reduced micropore size. No linear shrinkage was observed with the addition of MgO to thealumina slip. Added MgO was also effective in boosting fracture toughness. The present findings indicate that the MgOsupplementedbinding material is useful for clinical applications

    Enhanced initial cell responses to chemically modified anodized titanium.

    Get PDF
    BACKGROUND: Previously, we reported that anodized porous titanium implants have photocatalytic hydrophilicity. However, this effect was not always sufficient for the significant improvement of bone apposition. PURPOSE: The purpose of this study was to improve the photocatalytic properties of porous titanium implants by the fluoride modification of the anodized titanium dioxide (TiO(2)), and to investigate the initial cell response to it. MATERIALS AND METHODS: The ideal concentration of ammonium hydrogen fluoride (NH(4)F-HF(2)) used in this study was determined by a static water contact angle assay. The ideal concentration of NH(4)F-HF(2) was 0.175%, and experimental disks were treated with this concentration. A pluripotent mesenchymal cell line, C2C12, was cultured on the disks in order to investigate cell attachment, morphology, and proliferation. RESULTS: Cell attachment after 30 minutes of culturing was significantly higher for the ultraviolet-irradiated, fluoride-modified anodized TiO(2) (p < .05), and the simultaneous scanning electron microscope observation showed a rather flattened and extended cell morphology. The proliferation rate after 24 hours was also significantly higher for the fluoride-modified anodized TiO(2). CONCLUSION: Fluoride chemical modification enhances the hydrophilic property of the anodized TiO(2) and improves the initial cell response to it

    Coexpression of Ang1 and Tie2 in Odontoblasts of Mouse Developing and Mature Teeth?A New Insight into Dentinogenesis

    Get PDF
    Agiopoieten regulates vascular angiogenesis and stabilization, and is reported to promote bone formation by facilitating angiogenesis. To estimate the role of Ang1 in odontogenesis, we explored the distribution of Ang1 and the receptor, Tie2 in the mouse developing and mature first molar of the mandible. At embryonic day 18, when differentiation of odontoblasts begins, immunosignals for Ang1 were intensely detected in the basement membrane and the distal side, which faced the basement membrane of odontoblasts. In situ hybridization revealed that Ang1 was expressed in odontoblasts and ameloblasts facing the basement membrane. Tie2 was localized in the distal side of odontoblasts. After birth, Ang1 was detected in the predentin, whereas both Ang1 and Tie2 were colocalized in odontoblasts and odontoblast processes. These distributions were retained up to 8 weeks. In contrast to odontoblasts, ameloblasts, cementoblasts and osteoblasts expressed Ang1 but did not express Tie2. Colocalization of Ang1 and Tie2 in odontoblasts and selective expression of Tie2 in odontoblasts among cells responsible for calcified tissue formation suggested the involvement of autocrine signals of Ang1-Tie2 in dentinogenesis

    Zoledronate/Anti-VEGF Neutralizing Antibody Combination Administration Increases Osteal Macrophages in a Murine Model of MRONJ Stage 0-like Lesions

    Get PDF
    The pathophysiology, pathogenesis, histopathology, and immunopathology of medicationrelated osteonecrosis of the jaw (MRONJ) Stage 0 remain unclear, although 50% of MRONJ Stage 0 cases could progress to higher stages. The aim of this study was to investigate the effects of zoledronate (Zol) and anti-vascular endothelial cell growth factor A (VEGFA) neutralizing antibody (Vab) administration on polarization shifting of macrophage subsets in tooth extraction sockets by creating a murine model of MRONJ Stage 0-like lesions. Eight-week-old, female C57BL/6J mice were randomly divided into 4 groups: Zol, Vab, Zol/Vab combination, and vehicle control (VC). Subcutaneous Zol and intraperitoneal Vab administration were performed for 5 weeks with extraction of both maxillary first molars 3 weeks after drug administration. Euthanasia was conducted 2 weeks after tooth extraction. Maxillae, tibiae, femora, tongues, and sera were collected. Structural, histological, immunohistochemical, and biochemical analyses were comprehensively performed. Tooth extraction sites appeared to be completely healed in all groups. However, osseous healing and soft tissue healing of tooth extraction sites were quite different. The Zol/Vab combination significantly induced abnormal epithelial healing, and delayed connective tissue healing due to decreased rete ridge length and thickness of the stratum granulosum and due to decreased collagen production, respectively. Moreover, Zol/Vab significantly increased necrotic bone area with increased numbers of empty lacunae compared with Vab and VC. Most interestingly, Zol/Vab significantly increased the number of CD169+ osteal macrophages (osteomacs) in the bone marrow and decreased F4/80+ macrophages, with a slightly increased ratio of F4/80+CD38+ M1 macrophages compared to VC. These findings are the first to provide new evidence of the involvement of osteal macrophages in the immunopathology of MRONJ Stage 0-like lesions

    Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells.

    Get PDF
    Plasma fibronectin (pFN) is known to regulate cell growth, differentiation or survival of osteoblasts in vitro. It is also speculated to be important for the early phase of osseointegration, however, its actual in vivo behavior is unknown. The objective of this study is to clarify the role of pFN during osseointegration. We developed a titanium ion-plated acrylic implant (Ti-acryl) for thin sectioning without removal of the implant. Either Ti-acryl or pFN-coated Ti-acryl (FN-Ti-acryl) was implanted in the mouse femur. Samples were taken on days 1-7 and on day 14 after the operation, and were decalcified and paraffin embedded. The bone healing process and immunofluorescence localization of pFN and cellular fibronectin (cFN), a marker for fibroblastic cells were examined. Simultaneously, the effect of pFN on chemotaxis, proliferation and differentiation of bone marrow stromal cells (BMSCs) was analyzed in vitro. The in vivo results showed that faster direct bone formation was seen for the FN-Ti-acryl group compared to the Ti-acryl group. The in vitro results showed that pFN significantly promoted BMSCs chemotaxis, however, had no effect on proliferation or differentiation. The results indicate that pFN regulated chemotaxis of osteogenic cells and coating the implant with pFN enhanced earlier osseointegration
    corecore