78 research outputs found

    Design and properties of polymides with electrodeposition ability for high performance insulators

    Get PDF
    Please click Additional Files below to see the full abstract

    Proliferation and cell death of human glioblastoma cells after carbon-ion beam exposure: Morphologic and morphometric analyses

    Get PDF
    Histological analyses of glioblastoma cells after carbon-ion exposure are still limited and ultrastructural characteristics have not been investigated in detail. Here we report the results of morphological and morphometric analyses of a human glioblastoma cell line, CGNH-89, after ionizing radiation to characterize the effect of a carbon-beam on glioblastoma cells. Using CGNH-89 cells exposed to 0–10 Gy of X-ray (140kVp) or carbon-ions (18.3 MeV/nucleon, LET = 108 keV/μm), we performed conventional histology and immunocytochemistry with MIB-1 antibody, transmission electron microscopy, and computer-assisted, nuclear size measurements. CGNH-89 cells with a G to A transition in codon 280 in exon 8 of the TP53 gene had nuclei with pleomorphism, marked nuclear atypia and brisk mitotic activity. After carbon-ion and X-ray exposure, living cells showed decreased cell number, nuclear condensation, increased atypical mitotic figures, and a tendency of cytoplasmic enlargement at the level of light microscopy. The deviation of the nuclear area size increased during 48 hours after irradiation, while the small cell fraction increased in 336 hours. In glioblastoma cells of the control, 5 Gy carbon-beam, and 10 Gy carbon-beam, and MIB-1 labeling index decreased in 24 hours (12%, 11%, 7%, respectively) but increased in 48 hours (10%, 20%, 21%, respectively). Ultrastructurally, cellular enlargement seemed to depend on vacuolation, swelling of mitochondria, and increase of cellular organelles, such as the cytoskeleton and secondary lysosome. We could not observe apoptotic bodies in the CGNH-89 cells under any conditions. We conclude that carbon-ion irradiation induced cell death and senescence in a glioblastoma cell line with mutant TP53. Our results indicated that the increase of large cells with enlarged and bizarre nuclei, swollen mitochondria, and secondary lysosome occurred in glioblastoma cells after carbon-beam exposure.学位記番号:医博甲1096, 学位の種類:博士(医), 学位授与年月日:平成20年3月25

    iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease

    Get PDF
    In the process of drug development, in vitro studies do not always adequately predict human-specific drug responsiveness in clinical trials. Here, we applied the advantage of human iPSC-derived neurons, which offer human-specific drug responsiveness, to screen and evaluate therapeutic candidates for Alzheimer’s disease (AD). Using AD patient neurons with nearly 100% purity from iPSCs, we established a robust and reproducible assay for amyloid β peptide (Aβ), a pathogenic molecule in AD, and screened a pharmaceutical compound library. We acquired 27 Aβ-lowering screen hits, prioritized hits by chemical structure-based clustering, and selected 6 leading compounds. Next, to maximize the anti-Aβ effect, we selected a synergistic combination of bromocriptine, cromolyn, and topiramate as an anti-Aβ cocktail. Finally, using neurons from familial and sporadic AD patients, we found that the cocktail showed a significant and potent anti-Aβ effect on patient cells. This human iPSC-based platform promises to be useful for AD drug development

    Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM)

    Get PDF
    Tsetse flies (Glossina spp.) are the primary vectors of trypanosomes, which can cause human and animal African trypanosomiasis in Sub-Saharan African countries. The objective of this study was to explore the genome of Glossina morsitans morsitans for evidence of horizontal gene transfer (HGT) from microorganisms. We employed an alignment-free clustering method, that is, batch learning self-organising map (BLSOM), in which sequence fragments are clustered based on the similarity of oligonucleotide frequencies independently of sequence homology. After an initial scan of HGT events using BLSOM, we identified 3.8% of the tsetse fly genome as HGT candidates. The predicted donors of these HGT candidates included known symbionts, such as Wolbachia, as well as bacteria that have not previously been associated with the tsetse fly. We detected HGT candidates from diverse bacteria such as Bacillus and Flavobacteria, suggesting a past association between these taxa. Functional annotation revealed that the HGT candidates encoded loci in various functional pathways, such as metabolic and antibiotic biosynthesis pathways. These findings provide a basis for understanding the coevolutionary history of the tsetse fly and its microbes and establish the effectiveness of BLSOM for the detection of HGT events

    Repair Kinetics of DNA Double Strand Breaks Induced by Simulated Space Radiation

    No full text
    Radiation is unavoidable in space. Energetic particles in space radiation are reported to induce cluster DNA damage that is difficult to repair. In this study, normal human fibroblasts were irradiated with components of space radiation such as proton, helium, or carbon ion beams. Immunostaining for γ-H2AX and 53BP1 was performed over time to evaluate the kinetics of DNA damage repair. Our data clearly show that the repair kinetics of DNA double strand breaks (DSBs) induced by carbon ion irradiation, which has a high linear energy transfer (LET), are significantly slower than those of proton and helium ion irradiation. Mixed irradiation with carbon ions, followed by helium ions, did not have an additive effect on the DSB repair kinetics. Interestingly, the mean γ-H2AX focus size was shown to increase with LET, suggesting that the delay in repair kinetics was due to damage that is more complex. Further, the 53BP1 focus size also increased in an LET-dependent manner. Repair of DSBs, characterized by large 53BP1 foci, was a slow process within the biphasic kinetics of DSB repair, suggesting non-homologous end joining with error-prone end resection. Our data suggest that the biological effects of space radiation may be significantly influenced by the dose as well as the type of radiation exposure

    Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells

    No full text
    Evidence has accumulated that ionizing radiation induces biological effects in non-irradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. Here we performed microarray analysis of irradiated and bystander fibroblasts in confluent cultures. To see the effects in bystander cells, each of 1, 5 and 25 sites was targeted with 10 particles of carbon ions (18.3MeV/u, 103keV/mum) using microbeams, where particles traversed 0.00026, 0.0013 and 0.0066% of cells, respectively. diated cells, cultures were exposed to 10% survival dose (D), 0.1D and 0.01D of corresponding broadbeams (108keV/mum). Irrespective of the target numbers (1, 5 or 25 sites) and the time (2 or 6h postirradiation), similar expression changes were observed in bystander cells. Among 874 probes that showed more than 1.5-fold changes in bystander cells, 25% were upregulated and the remainder downregulated. These included genes related to cell communication (PIK3C2A, GNA13, FN1, ANXA1 and IL1RAP), stress response (RAD23B, ATF4 and EIF2AK4) and cell cycle (MYCN, RBBP4 and NEUROG1). Pathway analysis revealed serial bystander activation of G protein/PI-3 kinase pathways. Instead, genes related to cell cycle or death (CDKN1A, GADD45A, NOTCH1 and BCL2L1), and cell communication (IL1B, TCF7 and ID1) were upregulated in irradiated cells, but not in bystander cells. Our results indicate different expression profiles in irradiated and bystander cells, and imply that intercellular signaling between irradiated and bystander cells activate intracellular signaling, leading to the transcriptional stress response in bystander cells

    Histone Deacetylase Inhibitors Sensitize Murine B16F10 Melanoma Cells to Carbon Ion Irradiation by Inducing G1 Phase Arrest

    No full text
    Epigenetic processes, in addition to genetic abnormalities, play a critical role in refractory malignant diseases and cause the unresponsiveness to various chemotherapeutic regimens and radiotherapy. Herein we demonstrate that histone deacetylase inhibitors (HDACis) can be used to sensitize malignant melanoma B16F10 cells to carbon ion irradiation. The cells were first treated with HDACis (romidepsin [FK228, depsipeptide], trichostatin A [TSA], valproic acid [VPA], and suberanilohydroxamic acid [SAHA, vorinostat]) and were then exposed to two types of radiation (carbon ions and gamma-rays). We found that HDACis enhanced the radiation-induced apoptosis and suppression of clonogenicity that was induced by irradiation, having a greater effect with carbon ion irradiation than with gamma-rays. Carbon ion irradiation and the HDACi treatment induced G2/M and G0/G1 cell cycle arrest, respectively. Thus, it is considered that HDACi treatment enhanced the killing effects of carbon ion irradiation against melanoma cells by inducing the arrest of G1 phase cells, which are sensitive to radiation due to a lack of DNA homologous recombination repair. Based on these findings, we propose that pretreatment with HDACis as radiosensitizers to induce G1 arrest combined with carbon ion irradiation may have clinical efficacy against refractory cancer
    corecore