15 research outputs found
Evaluation of the immunotoxicity potential of nanomaterials using THP-1 cells
With the expansion of nanomaterials (NMs) usage, concerns about their toxicity are increasing, and the wide variety of NMs makes it difficult to assess their toxicity. Therefore, the development of a high-throughput, accurate, and certified method to evaluate the immunotoxicity of NMs is required. In this study, we assessed the immunotoxicity potential of various NMs, such as nanoparticles of silver, silica, and titanium dioxide, using the human Cell Line Activation Test (h-CLAT) at the cellular level. After exposure to silver nanoparticle dispersions, the expression levels of CD86 and CD54 increased, suggesting the activation of antigen-presenting cells (APCs) by silver nanoparticles. Quantification of silver ions eluted from silver nanoparticles and the activation of APCs by silver ions suggested that it was due to the release of silver ions. Silica nanoparticles also increased the expression of CD86 and/or CD54, and their activation ability correlated with the synthesis methods and hydrodynamic diameters. The ability of titanium dioxide to activate APCs differed depending on the crystal type and hydrodynamic diameter. These results suggest a potential method to evaluate the immunotoxicity potential of various NMs based on their ability to activate APCs using human monocytic THP-1 cells. This method will be valuable in assessing the immunotoxicity potential and elucidating the immunotoxic mechanisms of NMs
Alternatives for skin sensitisation: Hazard identification and potency categorisation: Report from an EPAA/CEFIC LRI/Cosmetics Europe cross sector workshop, ECHA Helsinki, April 23rd and 24th 2015
In the two years since the last workshop report, the environment surrounding the prediction of skin sensitisation hazards has experienced major change. Validated non-animal tests are now OECD Test Guidelines. Accordingly, the recent cross sector workshop focused on how to use in vitro data for regulatory decision-making. After a review of general approaches and six case studies, there was broad consensus that a simple, transparent stepwise process involving non-animal methods was an opportunity waiting to be seized. There was also strong feeling the approach should not be so rigidly defined that assay variations/additional tests are locked out. Neither should it preclude more complex integrated approaches being used for other purposes, e.g. potency estimation. All agreed the ultimate goal is a high level of protection of human health. Thus, experience in the population will be the final arbiter of whether toxicological predictions are fit for purpose. Central to this is the reflection that none of the existing animal assays is perfect; the non-animal methods should not be expected to be so either, but by integrated use of methods and all other relevant information, including clinical feedback, we have the opportunity to continue to improve toxicology whilst avoiding animal use.JRC.I.5-Systems Toxicolog
State-of-the-art and new options to assess T cell activation by skin sensitizers: Cosmetics Europe Workshop
Significant progress has been made in the development and validation of non-animal test methods for skin sensitization assessment. At present, three of the four key events of the Adverse Outcome Pathway (AOP) are assessable by OECD-accepted in vitro methods. The fourth key event describes the immunological response in the draining lymph node where activated dendritic cells present major histocompatibility complex-bound chemically modified peptides to naive T cells, thereby priming the proliferation of antigen-specific T cells. Despite substantial efforts, modelling and assessing this adaptive immune response to sensitizers with in vitro T cell assays still represents a challenge. The Cosmetics Europe Skin Tolerance Task Force organized a workshop, bringing together academic researchers, method developers, industry representatives and regulatory stakeholders to review the scientific status of T cell-based assays, foster a mutual scientific understanding and conceive new options to assess T cell activation. Participants agreed that current T cell assays have come a long way in predicting immunogenicity, but that further investment and collaboration is required to simplify assays, optimize their sensitivity, better define human donor-to-donor variability and evaluate their value to predict sensitizer potency. Furthermore, the potential role of T cell assays in AOP-based testing strategies and subsequent safety assessment concepts for cosmetic ingredients was discussed. It was agreed that it is currently difficult to anticipate uses of T cell assay data for safety assessment and concluded that experience from case studies on real-life risk assessment scenarios is needed to further consider the usefulness of assessing the fourth AOP key event.JRC.F.3-Chemicals Safety and Alternative Method
State-of-the-Art and New Options to Assess T Cell Activation by Skin Sensitizers: Cosmetics Europe Workshop
Significant progress has been made in the development and validation of non-animal test methods for skin sensitization assessment. At present, three of the four key events of the Adverse Outcome Pathway (AOP) are assessable by OECD-accepted in vitro methods. The fourth key event describes the immunological response in the draining lymph node where activated dendritic cells present major histocompatibility complex-bound chemically modified peptides to naive T cells, thereby priming the proliferation of antigen-specific T cells. Despite substantial efforts, modelling and assessing this adaptive immune response to sensitizers with in vitro T cell assays still represents a challenge. The Cosmetics Europe Skin Tolerance Task Force organized a workshop, bringing together academic researchers, method developers, industry representatives and regulatory stakeholders to review the scientific status of T cell-based assays, foster a mutual scientific understanding and conceive new options to assess T cell activation. Participants agreed that current T cell assays have come a long way in predicting immunogenicity, but that further investment and collaboration is required to simplify assays, optimize their sensitivity, better define human donor-to-donor variability and evaluate their value to predict sensitizer potency. Furthermore, the potential role of T cell assays in AOP-based testing strategies and subsequent safety assessment concepts for cosmetic ingredients was discussed. It was agreed that it is currently difficult to anticipate uses of T cell assay data for safety assessment and concluded that experience from case studies on real-life risk assessment scenarios is needed to further consider the usefulness of assessing the fourth AOP key event
Systematic evaluation of non-animal test methods for skin sensitisation safety assessment.
The need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitisation potency prediction. The results of the first phase - systematic evaluation of 16 test methods - are presented here. This evaluation involved generation of data on a common set of ten substances in all methods and systematic collation of information including the level of standardisation, existing test data, potential for throughput, transferability and accessibility in cooperation with the test method developers. A workshop was held with the test method developers to review the outcome of this evaluation and to discuss the results. The evaluation informed the prioritisation of test methods for the next phase of the non-animal testing strategy development framework. Ultimately, the testing strategy - combined with bioavailability and skin metabolism data and exposure consideration - is envisaged to allow establishment of a data integration approach for skin sensitisation safety assessment of cosmetic ingredients