22 research outputs found

    Compressive sensing imaging with a graphene modulator at THz frequency in transmission mode

    Get PDF
    In this study we demonstrate compressive sensing imaging with a unique graphene based optoelectronic device which allows us to modulate the THz field through an array of columns or rows distributed throughout its face. © 2016 IEEE

    Observation of Gate-Tunable Coherent Perfect Absorption of Terahertz Radiation in Graphene

    Get PDF
    We report experimental observation of electrically tunable coherent perfect absorption (CPA) of terahertz (THz) radiation in graphene. We develop a reflection-type tunable THz cavity formed by a large-area graphene layer, a metallic reflective electrode, and an electrolytic medium in between. Ionic gating in the THz cavity allows us to tune the Fermi energy of graphene up to 1 eV and to achieve a critical coupling condition at 2.8 THz with absorption of 99%. With the enhanced THz absorption, we were able to measure the Fermi energy dependence of the transport scattering time of highly doped graphene. Furthermore, we demonstrate flexible active THz surfaces that yield large modulation in the THz reflectivity with low insertion losses. We anticipate that the gate-tunable CPA will lead to efficient active THz optoelectronics applications. © 2016 American Chemical Society

    Electrically controlled terahertz spatial light modulators with graphene arrays

    Get PDF
    Gate-tunable high-mobility electrons on atomically thin graphene layers provide a unique opportunity to control electromagnetic waves in a very broad spectrum. In this paper, we describe an electrically-controlled multipixel terahertz light modulators. The spatial light modulator is fabricated using two large-area graphene layers grown by chemical vapor deposition and transferred on THz transparent and flexible substrates. Room temperature ionic liquid, inserted between the graphene, provides mutual gating between the graphene layers. We used passive matrix addressing to control local charge density thus the THz transmittance. With this device configuration, we were able to obtain 5×5 arrays of graphene modulator with 65% modulation between 0.1 to 1.5 THz. © 2016 IEEE

    Observation of Gate-Tunable Coherent Perfect Absorption of Terahertz Radiation in Graphene

    No full text
    We report experimental observation of electrically tunable coherent perfect absorption (CPA) of terahertz (THz) radiation in graphene. We develop a reflection-type tunable THz cavity formed by a large-area graphene layer, a metallic reflective electrode, and an electrolytic medium in between. Ionic gating in the THz cavity allows us to tune the Fermi energy of graphene up to 1 eV and to achieve a critical coupling condition at 2.8 THz with absorption of 99%. With the enhanced THz absorption, we were able to measure the Fermi energy dependence of the transport scattering time of highly doped graphene. Furthermore, we demonstrate flexible active THz surfaces that yield large modulation in the THz reflectivity with low insertion losses. We anticipate that the gate-tunable CPA will lead to efficient active THz optoelectronics applications

    Terahertz modulation using a bandpass filter combined with a graphene supercapacitor

    No full text
    Graphene is proving to be an efficient medium for the control of mm-wave/THz radiation. Its electrical and dielectric properties allows it to be incorporated into various existing device architectures. One such application is in the modulation of the amplitude of the propagating THz radiation. Due to its electrical properties this interaction is typically broadband in nature. To make this frequency selective we propose the use of metamaterials or frequency selective surfaces. Generally, these structures perform the frequency filtering by modifying the propagation of the input wave with respect to changing structural parameters of the device itself. By fabricating a frequency selective surface based on a periodic circular hole array on an aluminum sheet we show that the transmission of a narrow band of THz radiation can be modulated when the sheet is combined with a highly efficient graphene based supercapacitor device. The modulation depth of the device was 15% in the frequency region of interest. The simple structure of the device coupled with the obtained performance shows that graphene based devices have great potential for the development of THz technologies

    Modulation and frequency response of GDDs in the millimeter wave/THz region

    No full text
    New methods are being developed for efficient detection of terahertz waves. While many detection techniques show promise their commercial development is still limited due to the overall complexity and cost of the imaging system. Using commercially available neon indicator lamps the interaction mechanism between the glow plasma and the millimeter / THz wave is investigated in detail as a function of the device speed, sensitivity to frequency and polarization of the light. A lock-in amplifier was used to measure the response up to 90kHz when the GDD was placed at the focus of a 113GHz center frequency reconfigured Dielectric Resonating Oscillator (DRO) driven multiplied Schottky diode source. In addition the polarization sensitivity of the GDD was tested for two different scenarios whereby rotating the GDD the detected signal is observed to agree well with Malus's Law for one particular orientation. Furthermore, the frequency dependent GDD-THz interactions are investigated using a 240-380 GHz tunable continuous wave radiation source. Employing both systems allow us to understand the response of GDDs with respect to modulation frequency, RF frequency and polarization orientation. Resonance effects, frequency sensitivity and geometrical structures of GDDs are studied for the purpose of obtaining better performance in THz-GDD interaction for applications including general THz wave detection and imaging

    Electrically controlled terahertz spatial light modulators with graphene arrays

    No full text
    Gate-tunable high-mobility electrons on atomically thin graphene layers provide a unique opportunity to control electromagnetic waves in a very broad spectrum. In this paper, we describe an electrically-controlled multipixel terahertz light modulators. The spatial light modulator is fabricated using two large-area graphene layers grown by chemical vapor deposition and transferred on THz transparent and flexible substrates. Room temperature ionic liquid, inserted between the graphene, provides mutual gating between the graphene layers. We used passive matrix addressing to control local charge density thus the THz transmittance. With this device configuration, we were able to obtain 5×5 arrays of graphene modulator with 65% modulation between 0.1 to 1.5 THz
    corecore