123 research outputs found

    Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge

    Get PDF
    Additional file 1. Table S1. Average structural similarity scores for the DDI/non–DDI pairs in the network of each De. Table S2-1. Top 10 predicted drugs with DDIs for warfarin. Table S2-2. Top 10 predicted drugs with DDIs for simvastatin. Table S3. Four-fold cross-validation test results. Text S1. Drugs that show DDI (DrugBank ID). Figure S1. Illustration of construction of training and test set for 4-fold cross validation. Figure S2. ROC curves using the models with score set 1 in a 4-fold validation

    Dietary Restriction Ameliorates Diabetic Nephropathy through Anti-Inflammatory Effects and Regulation of the Autophagy via Restoration of Sirt1 in Diabetic Wistar Fatty (fa/fa) Rats: A Model of Type 2 Diabetes

    Get PDF
    Aim. Despite the beneficial effects of dietary restriction (DR) on lifespan, age-related diseases, including diabetes and cardiovascular diseases, its effects on type 2 diabetic nephropathy remain unknown. This study examined the renoprotective effects of DR in Wistar fatty (fa/fa) rats (WFRs). Methods. WFRs were treated with DR (40% restriction) for 24 weeks. Urinary albumin excretion, creatinine clearance, renal histologies, acetylated-NF-κB (p65), Sirt1 protein expression, and p62/Sqstm 1 accumulation in the renal cortex, as well as electron microscopic observation of mitochondrial morphology and autophagosomes in proximal tubular cells were estimated. Results. DR ameliorated renal abnormalities including inflammation in WFRs. The decrease in Sirt1 levels, increase in acetylated-NF-κB, and impaired autophagy in WFRs were improved by DR. Conclusions. DR exerted anti-inflammatory effects and improved the dysregulation of autophagy through the restoration of Sirt1 in the kidneys of WFRs, which resulted in the amelioration of renal injuries in type 2 diabetes

    雌ラットにおいて生殖腺の状態とエストロゲン環境が視床下部オキシトシン遺伝子発現および血清オキシトシンレベルに及ぼす影響

    Get PDF
    Oxytocin (OT) and its receptor (OTR) play various roles in the central and peripheral regulation of appetite and body weight. Previously, we have shown that the administration of OT markedly decreased appetite and body weight gain in ovariectomized (OVX) obese rats. In addition, recent studies have shown that the endogenous OT system is also affected by endogenous or exogenous estrogen. In this study, we showed that ovariectomy decreased rats' hypothalamic OT/OTR mRNA and serum OT levels, but did not affect their visceral fat OTR mRNA levels. The chronic administration of estradiol (E2) abrogated these ovariectomy-induced changes; i.e., it increased the rats' hypothalamic OT/OTR mRNA and serum OT levels, and may be associated with reductions in food intake and body weight gain. In addition, acute E2 administration increased the rats' hypothalamic OTR mRNA and serum OT levels, but did not affect their hypothalamic OT mRNA levels. Taken together, these results suggest that endogenous OT and/or OTR expression might be positively regulated by E2 and that the suppressive effects of E2 on appetite and body weight gain might be mediated, at least in part, by the OT system. Thus, we consider that OT might be a target hormone to pursue subsequent interventions of menopause for menopause-induced metabolic disorders

    Water balance in healthy and handicapped adults

    Get PDF
    The body’s water balance is changed by food and beverage intake, metabolism, and excretion. In this study, we performed a cross-sectional study that investigated the changes of water intake and water output in healthy Japanese young and elderly people and handicapped adults. Water balance was assessed by water intake from foods and beverages, metabolic water production, non-renal water losses (NRWL), and urine volume. Most of the parameters did not change with aging in healthy adults. Estimated total water intake (ml / kg / day) increased with aging. In the healthy men, healthy women, and handicapped adults, daily water intake (median [interquartile range]) accounted for 49.4 (41.4-59.9) ml / kg, 42.9 (38.7-51.8) ml / kg, and 50.9 (43.8-74.0) ml / kg, respectively. Water loss from the kidney accounted for 19.2 (16.2-29.2) ml / kg, 22.0 (16.2-26.6) ml / kg, and 27.5 (22.7- 47.2) ml / kg, respectively. NRWL accounted for 26.6 (18.5-35.2) ml / kg, 22.4 (16.2-28.8) ml / kg, and 23.5 (19.8-28.5) ml / kg, respectively. Our findings suggest that a daily total water intake of more than 50-55 ml / kg is required to prevent dehydration in healthy and handicapped adults

    A novel PCOS rat model and an evaluation of its reproductive, metabolic, and behavioral phenotypes

    Get PDF
    Background: Although animal models of PCOS have been used in many studies, none of them can reproduce both the reproductive and metabolic phenotypes of PCOS. In addition, behavioral parameters have not been evaluated in PCOS animal models. Purpose: We tried to produce an improved rat model of PCOS, and the reproductive, metabolic, and behavioral phenotypes of the model rats were evaluated. Methods: Female rats were implanted with silicon tubes containing oil-dissolved dihydrotestosterone (Oil-DHT) as a new PCOS model. Their phenotypes were compared with those of conventional PCOS model rats (DHT), into which tubes containing crystalline DHT were implanted, and non-DHT-treated rats (control). Results: Both the Oil-DHT and DHT rats showed greater body weight gain, food intake, and fat depot weight than the control rats. Furthermore, these groups showed fewer estrous stages and increased numbers of cystic follicles. The DHT rats exhibited lower ovarian and uterine weights than the control rats, whereas no such changes were observed in the Oil-DHT rats. The Oil-DHT and DHT rats showed less locomotor activity in the light phase than the control rats. Conclusions: Our proposed PCOS model reproduced both the reproductive and metabolic phenotypes of PCOS and may have potential for PCOS research

    Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    Get PDF
    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterize done of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle

    Functions of mucosal associated invariant T cells in eye diseases

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are a unique subset of T cells that recognizes metabolites derived from the vitamin B2 biosynthetic pathway. Since the identification of cognate antigens for MAIT cells, knowledge of the functions of MAIT cells in cancer, autoimmunity, and infectious diseases has been rapidly expanding. Recently, MAIT cells have been found to contribute to visual protection against autoimmunity in the eye. The protective functions of MAIT cells are induced by T-cell receptor (TCR)-mediated activation. However, the underlying mechanisms remain unclear. Thus, this mini-review aims to discuss our findings and the complexity of MAIT cell-mediated immune regulation in the eye
    corecore