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Abstract 

Drug–drug interactions (DDIs) may lead to adverse effects and potentially result in drug withdrawal from the market. 
Predicting DDIs during drug development would help reduce development costs and time by rigorous evaluation of 
drug candidates. The primary mechanisms of DDIs are based on pharmacokinetics (PK) and pharmacodynamics (PD). 
This study examines the effects of 2D structural similarities of drugs on DDI prediction through interaction networks 
including both PD and PK knowledge. Our assumption was that a query drug (Dq) and a drug to be examined (De) 
likely have DDI if the drugs in the interaction network of De are structurally similar to Dq. A network of De describes 
the associations between the drugs and the proteins relating to PK and PD for De. These include target proteins, pro-
teins interacting with target proteins, enzymes, and transporters for De. We constructed logistic regression models for 
DDI prediction using only 2D structural similarities between each Dq and the drugs in the network of De. The results 
indicated that our models could effectively predict DDIs. It was found that integrating structural similarity scores of 
the drugs relating to both PK and PD of De was crucial for model performance. In particular, the combination of the 
target- and enzyme-related scores provided the largest increase of the predictive power.

Keywords: Drug–drug interaction (DDI), Structural similarity, Interaction networks, Enzymes, Transporters, Target 
proteins, Pharmacokinetics (PK), Pharmacodynamics (PD), Protein–protein interaction (PPI)
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Background
DDI occurs when a drug affects the efficacy of another 
drug that is co-administered. Between 2009 and 2012, 
38.1% of U.S. adults ages 18–44 used three or more pre-
scription drugs during a 30 day time period [1]. The per-
centages increased substantially as a function of age, with 
67.2% for ages 45–64, and 89.8% for age 65 years or older, 
respectively. The number of incidents of adverse drug 
reaction increases exponentially if a patient takes four 
or more drugs [2]. Although DDI may have beneficial 
effects, it can cause serious adverse effects and sometimes 

lead to drug withdrawal [3]. During drug development, 
the prediction of such DDI would help reduce the time 
and costs by prioritizing drug candidates.

The main types of DDI are based on pharmacokinet-
ics (PK) and pharmacodynamics (PD). PK is the body’s 
response to a drug, which includes absorption, distribu-
tion, metabolism, and excretion (ADME). DDI occurs 
when two drugs share the same mechanism of excre-
tion [4]. A significant number of studies on PK-based 
DDI have been done at the molecular level involving 
enzymes and transporters, and resulted in a large amount 
of experimental data [5]. For example, changes in gas-
tric pH caused by a drug can affect the gastro-intestinal 
absorption of a co-administered drug [4]. If two drugs 
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both binding to a same plasma protein are co-adminis-
tered, the concentration of the free drugs in plasma may 
change [4]. Also, various drugs are substrates, inhibitors, 
or inducers of the CYP enzymes, the dominant metabolic 
enzymes. As a result, DDI can occur when an inhibitor 
and a substrate of a CYP enzyme are co-administered. 
The PD-based DDIs are found at the receptor level, the 
signal transduction level, and the physiological system 
level [6]. The most common ones occur at the recep-
tor level where drugs compete for binding to the same 
receptor.

Many studies for predicting DDI have been reported 
based on various approaches such as physiologically 
based pharmacokinetic (PBPK) modeling, molecular 
structural similarity analysis, ontology and annotation 
based analysis, network modeling, QSAR modeling, and 
data mining from clinical data. A PBPK model consists 
of mathematical equations that describe the properties of 
ADME in the human body. For example, a PBPK model 
was developed using the results from a clinical pharma-
cokinetic study under single and multiple-dose condi-
tions to predict the DDI for crizotinib with ketoconazole 
or rifampin [7]. Structural similarity for DDI predic-
tion has been employed based on the idea that if there 
is a DDI between drug A and drug B, and drug C has a 
similar structure to drug A, there is likely a DDI between 
drug C and drug B [8]. Vilar et  al. predicted DDIs with 
a matrix transformation approach using structural simi-
larities of drugs with molecular fingerprints [8]. In subse-
quent studies, the authors reported prediction methods 
using integrated similarity measures including interac-
tion profile similarities, adverse effect similarities, and 
target similarities [9]. Based on the similar idea, INfer-
ring drug interactions (INDI), was developed to predict 
CYP-related and PD-related DDI using drug chemical 
similarities, side effects similarities, ATC (Anatomical 
Therapeutic Chemical classification system) similarities, 
target sequence similarities, protein–protein interac-
tion similarities, and Gene Ontology similarities [10]. In 
addition, 3D pharmacophoric similarity was used for the 
prediction of DDI, and the significance of 3D structure 
data was demonstrated, which captured the charac-
teristics that were missed by using only 2D data [11]. 
Luo et  al. developed a web server for DDI prediction 
through chemical–protein interaction profiles created 
by docking chemicals to the ligand binding pockets of 
the collected PDB structures [12]. DDI prediction using 
machine learning approaches was implemented on DDI-
networks through integrated phenotypic, therapeutic, 
structural and genomic similarities [13]. QSAR models 
for DDI prediction were constructed for CYP1A2, 2C9, 
2D6, and 3A4 by using two types of chemical descriptors 
and the balanced accuracy ranged from 72 to 79% [14]. 

There are also knowledge-based studies for DDI predic-
tion. Herrero-Zazo et al. inferred DDI with DDI knowl-
edge including types, mechanisms, and applications of 
DDIs using semantic web rule language [15]. Huang et al. 
predicted DDI using protein–protein interaction net-
work, which demonstrated an accuracy of 0.82 and recall 
of 0.62 [16]. Cami et al. [17] predicted DDI using known 
DDI networks. Recently, a computational model for pre-
dicting DDI was developed through integrated clinical 
side effect information from the drug labels and FDA 
adverse event reporting system [18]. Electronic health 
records (EHRs) were also used to identify or prioritize 
drug–drug-adverse events [19, 20].

Here, we proposed models for predicting DDIs using 
the structural similarities of drugs from the PK and PD 
networks and investigated the factors influencing DDIs 
for further improvement of the predictions. Our assump-
tion is that a query drug (Dq) and a drug to be examined 
(De) tend to interact if Dq is structurally similar to the 
drugs in De’s network that interact with the enzymes/
transporters/target proteins of De. The results of model 
assessment and two case studies were reported.

Results and discussion
Characteristics of each score type in the network
The distributions of structural similarities between Dq 
and the drugs in a network of De for the DDI pairs and 
non-DDI pairs are shown in Fig.  1. The construction of 
the network of De and the score types (Sd, Se, Seg, Str, Strg, 
Sta, and Stag) are described and defined in the Methods 
section. Note that the score values of −10 were excluded 
from Fig.  1. Panel (A) shows that the median of simi-
larities for all score types together for DDI pairs is larger 
than that for non-DDI pairs in general. The interquartile 
range for DDI pairs is slightly narrower than that for non-
DDI pairs. The same trends were observed in score dis-
tributions for each individual score type [panel (B)]. This 
suggests that the structural similarity scores based on 
integrated PK and PD interaction network can be used 
for the prediction of DDIs. The distributions of the scores 
Se, Str, and Sta shifted to the higher value range compar-
ing to those of the corresponding scores for pharmaco-
genetic associations (Seg, Strg, and Stag), which implies 
that pharmacogenetic interactions are less structurally 
dependent than physical interactions.

The averages of Sd in both cases of DDIs and non-DDIs 
(0.416 and 0.346 respectively) were the lowest among the 
scores, while the other scores (Se, Seg, Str, Strg, Sta, and Stag) 
ranged from 0.556 to 0.800 (Additional file 1: Table S1). 
Even though the structure of Dq is dissimilar with De, the 
other drugs interacting with the enzymes, transporters, 
or targets in De’s network can be structurally similar to 
Dq. In this case, it is still possible that Dq interacts with 
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those proteins of De and DDI between Dq and De may 
be observed. Se showed the highest average score value, 
which may be explained by the fact that an enzyme can 
metabolize many drugs, and therefore the probability for 
finding drugs structurally similar to Dq in the network 
can be higher.

The correlations between scores for DDI and non-
DDI pairs are shown  in Fig.  2. It appears that correla-
tions among the scores are generally classified into three 
groups: Sd, (Se, Seg, Str, and Strg), and (Sta and Stag), for 
both DDI and non-DDI pairs. Enzyme (Se and Seg) and 
transporter (Str and Strg) related scores correlated with 
each other to some degree, which may be related to the 
interplay between metabolizing enzymes and transport-
ers. It is reported that metabolizing enzymes and trans-
porters influence each other for the ADME of drugs and 
therefore may affect DDI [21]. For example, many drugs 

metabolized by CYP3A4 are also transported by P-gly-
coprotein [22]. Also, physical interaction and pharmaco-
genetic association correlated strongly, i.e. (Se and Seg), 
(Str and Strg), and (Sta and Stag). However, the correlations 
among the scores for DDI pairs are slightly weaker than 
those for non-DDI pairs.

Prediction results
Average area under the curve (AUC) values for the 
4-fold cross-validations with a series of score combina-
tion schemes are shown in Table 1. Generally, combining 
similarity scores that include both information relating 
to PK and PD resulted in stronger predictions. Although 
AUCs of the regression models using Set 1 through Set 
6 were not significantly different with the average values 
in the range of 0.84 and 0.83, ANOVA test revealed the 
importance of considering multiple scores. This implies 

Fig. 1 Structural similarity score distributions. a All types of scores 
combined. b Each individual score type Fig. 2 Correlation between scores. a DDI, b non-DDI
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the merit of information integration to our DDI predic-
tion model using the interaction network. Results for Set 
8 and Set 9, both integrating PK information regarding 
transporters and PD information (PKtr +  PD), showed 
lower AUC than those for Set 1 through Set 6 which all 
included enzyme information.

Interestingly, using a maximum score among scores in 
the entire network (Set 7) resulted in an AUC of 0.786 
with a standard deviation of 0.012, which was close to 
the AUCs for the models using Set 1 through Set 6. As 
shown in Fig. 3, the interquartile ranges of the distribu-
tions for the maximum score in the whole network for 
DDI pairs and for non-DDI pairs hardly overlap, unlike 
the situation when all scores were considered as shown 
in Fig. 1a. These observations imply that the most struc-
turally similar drug to Dq in the network is quite impor-
tant to DDI prediction but it is not the decisive factor 
for the ultimate prediction in the network system as 
the AUC for this model is still smaller than that for the 
model using Set 1. Using only a single information type 
(enzymes, transporters, or targets) along with knowl-
edge of the corresponding pharmacogenetic association 
resulted in lower prediction performance with AUC val-
ues ranging from 0.587 to 0.613 for the results of Set 13, 
Set 14, and Set 20.

There was a large increase in AUC for Set 1 through 
Set 6 when the PD-related information was integrated 
to the enzyme information (Set 20). AUC boosted from 
0.593 (Set 20) to 0.827 (Set 6) with a 39% increase and 
from 0.627 (Set 14) to 0.827 (Set 6) with a 32% increase. 
The second largest improvement in AUC was observed 

Table 1 AUC for 4-fold cross-validations

(PK + PD)_nog, PK and PD information without genetic information; DR, direct similarity score; PKe, PK with only enzyme information; PKtr, PK with only transporter 
information; SD, standard deviation

Score set Scores Included information Average AUC SD

Set 1 Sd, Se, Seg, Str, Strg, Sta, Stag DR + PK + PD 0.837 0.005

Set 2 Se, Str, Sta (PK + PD)_nog 0.837 0.009

Set 3 Se, Seg, Str, Strg, Sta, Stag PK + PD 0.834 0.012

Set 4 Sd, Se, Str, Sta DR + (PK + PD)_nog 0.834 0.005

Set 5 Sd, Se, Seg, Sta, Stag DR + PKe + PD 0.828 0.006

Set 6 Se, Seg, Sta, Stag PKe + PD 0.827 0.008

Set 7 max(Sd, Se, Seg, Str, Strg, Sta, Stag) Maximum score in the whole network 0.786 0.012

Set 8 Str, Strg, Sta, Stag PKtr + PD 0.741 0.009

Set 9 Sd, Str, Strg, Sta, Stag DR + PKtr + PD 0.736 0.005

Set 10 Sd, Se, Seg, Str, Strg DR + PK 0.672 0.006

Set 11 Se, Seg, Str, Strg PK 0.657 0.007

Set 12 Sd, Str, Strg DR + PKtr 0.653 0.008

Set 13 Str, Strg PKtr 0.631 0.019

Set 14 Sta, Stag PD 0.627 0.005

Set 15 Sta PD_nog 0.620 0.008

Set 16 Sd, Se, Seg DR + PKe 0.619 0.002

Set 17 Sd, Sta, Stag DR + PD 0.617 0.003

Set 18 Str PKtr_nog 0.616 0.015

Set 19 Sd DR 0.601 0.007

Set 20 Se, Seg PKe 0.593 0.009

Set 21 Se Pke_nog 0.587 0.009

Fig. 3 Similarity score distribution for the maximum score in the 
whole network
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when integrating PK-related information with PD-related 
information. AUC improved from 0.627 (Set 14) to 0.834 
(Set 3) with a 33% increase. When adding PD-related 
information to the enzyme and transporter information 
(score Set 11), AUC jumped from 0.657 (Set 11) to 0.834 
(Set 3) with a 27% increase. These results suggested that 
both PK and PD of De are critical for DDI prediction.

When combined with the target information, the 
enzyme information contributed more to the prediction 
than the transporter information. When the transporter 
data (PKtr) were replaced by the enzymes data (PKe), 
AUC increased from 0.741 (Set 8) to 0.827 (Set 6) with 
an 11% change. The structural space of drugs covered by 
Set 6 (PKe + PD information) might be larger than that 
covered by Set 8 (PKtr +  PD information), which may 
be attributed to the fact that the number of drugs with 
similar structures to Dq from the enzyme-related sub-
network of De is more than that from the transporter-
related sub-network. Prediction performance might be 
improved when the number of drugs associated with 
transporters increases. These results could also be due to 
the fact that the correlation between Se and Seg was lower 
than that between Str and Strg do (Fig. 2).

Comparing the results using score (Set 2 and Set 3), 
(Set 20 and Set 21), (Set 13 and Set 18), and (Set 14 and 
Set 15) revealed that pharmacogenetic associations did 
not contribute much to DDI prediction in terms of AUC, 
although the ANOVA test result indicated the importance 
of integrating pharmacogenetic associated information to 
models. This observation might be due to the fact that the 
scores for Se, Str and Sta are higher in general than the cor-
responding scores for Seg, Strg and Stag based on the distri-
bution shown in Fig. 1 b. Also Se and Seg, Str and Strg, and 
Sta and Stag correlated with each other in both DDI and 
non-DDI cases to some degree (Fig.  2), again indicating 
that these scores have less effect on DDI prediction.

Case studies
Two case studies of DDIs predictions are presented for 
warfarin and simvastatin. Warfarin is a blood thinner 
drug. One of warfarin’s drawbacks is that it interacts 
with many medications that are co-administered. Sim-
vastatin is a drug for lowering the level of low-density 
lipoprotein cholesterol and fats, and for raising the level 
of high-density lipoprotein cholesterol in the blood. It is 
on the WHO model list of essential medicines [23]. For 
each case study we re-built models using the entire data-
set but leaving out the data for any warfarin-drug pairs, 
or the data for any simvastatin-drug pairs, respectively, 
instead of applying the models constructed during the 
4-fold cross validations. The model constructed with Set 
1 was used for the prediction based on its superior per-
formance according to the ANOVA test results.

Warfarin
The top ten drugs with predicted DDI for warfarin 
are listed in the Additional file  1: Table S2-1. Four are 
reported in DrugBank to have DDI indications. Newly 
predicted DDI candidates for warfarin were dronabiol, 
quercetin, genistein, salicylic acid, fluorescein, and dox-
epin. Among them, the DDI between doxepin and war-
farin is reported on Micromedex [24] with a moderate 
interaction that increases the risk of bleeding. Quercetin 
is reported in Drugs.com as having moderate interactions 
with warfarin that reduce the efficacy of warfarin [25]. 
The definition of “moderate” on Drugs.com is that the 
combination is moderately significant in clinical applica-
tions and usually the combination should be avoided or 
may be used only under special circumstances. Genistein 
is listed as having significant interaction with warfarin 
on rxlist.com. The definition of “significant” interac-
tion in rxlist.com is that the combination potentially 
can cause dangerous DDI and should be used with cau-
tions and close monitoring. It is reported that quercetin 
displaces warfarin bound to human serum albumin [26] 
due to competitive binding and that genistein also shares 
the binding sites in human serum albumin with warfarin 
[27]. It is reported that special precautions are neces-
sary when taking dronabinol together with warfarin [28]. 
Overall, DDI between warfarin and eight out of the top 
ten predicted drugs were supported by reports in litera-
ture and databases. Comparing to the prediction results 
in the study by Vilar et al. [8], which also used drug struc-
tural similarities, two of the top ten drugs predicted by 
our model (i.e. salicyclic acid and estrone) were predicted 
to have DDI with warfarin in their study. Their predic-
tions are based on the structural similarity between De 
and the drugs that are known to have DDI with warfa-
rin (Dq) and therefore the chemical space searched is 
limited. On the other hand, our approach is based on the 
structural similarity between Dq and the drugs that inter-
act with the proteins in the interaction network of De. 
Therefore, our approach explores a larger chemical space 
and is capable of picking up DDIs with the drugs, which 
may not be structurally similar to drugs having known 
DDIs with warfarin.

Simvastatin
The top ten drugs with predicted DDI for simvastatin are 
shown in the Additional file  1: Table S2-2. None of the 
top ten drugs in Additional file 1: Table S2-2 is reported 
in DrugBank. Among them, however, lovastatin, predni-
solone, dexamethasone, prednisone, and tacrolimus are 
listed by Drugs.com as having moderate interaction with 
simvastatin [29–33]. It is not surprising to see structur-
ally similar drugs to simvastatin, e.g. lovastatin. However, 
our model also predicted tacrolimus, whose structure is 
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not similar to simvastatin. A study reported that lovasta-
tin and simvastatin likely had DDIs through p-glycopro-
tein (MDR1) transporter [34]. Six out of the top ten drugs 
were steroid hormones: several from the glucocorticoid 
family (prednisolone, dexamethasone, and prednisone), 
testosterone, aldosterone, and norethisterone. Dehydroe-
piandrosterone sulfate is the metabolite of a steroid hor-
mone, dehydroepiandrosterone. There is a recent report 
that simvastatin influenced the steroid hormone level in 
plasma in female patients who had non-classic congeni-
tal adrenal hyperplasm and were taking metformin [35]. 
Overall, five out of the top ten predicted drugs were sup-
ported by reports in the literature and databases. No false 
negative prediction of DDIs for simvastatin was made. 
All known drugs having DDI with simvastatin which 
include a total of 31 from DrugBank were picked up by 
our model. In comparison, only four of our top ten drugs 
(i.e. testosterone, prednisolone, prednisone, and lovasta-
tin) were predicted to have DDI with simvastatin in the 
study by Vilar et al. [8].

These two case studies suggested that our approach 
could also be used to predict possible enzymes and trans-
porters for a drug (Dq) in general. Cytochrome P450 2C9 
metabolizes warfarin and seven out of the top ten drugs 
predicted having DDI with warfarin. Similarly, multidrug 
resistance protein 1 interacts with warfarin and trans-
ports eight out of the top ten drugs. Cytochrome P450 
3A4 metabolizes simvastatin and seven out of the top 
ten drugs in the DDI prediction, and multidrug resist-
ance protein 1 transports simvastatin and eight out of 
the top ten drugs. On the other hand, the warfarin case 
study suggested the limitation of this approach. Compar-
ing to that no false negative prediction of DDIs was made 
for simvastatin, the DDI prediction for warfarin resulted 
in 18 false negatives out of 150 known DDIs. This is 
possibly due to the lack of relevant enzyme- and trans-
porter-information for those drugs in the network. This 
limitation may be eliminated over time when additional 
experimental PK data becomes available.

Conclusions
In this study, we investigated the factors for predicting 
DDI through structural similarities and the interaction 
networks which contain PK and PD knowledge. Our work 
demonstrated: (1) structural similarities between Dq and 
the drugs in the network of De can be used for predict-
ing DDIs between Dq and De; (2) the integration of both 
structural similarity scores relating to PK and PD was 
crucial for DDI prediction; (3) the inclusion of pharma-
cogenetically associated knowledge (scores: Seg, Strg, and 
Stag) only made minor contribution to DDI predictions. 
Two case studies showed the ability of this approach for 
predicting DDI. Eight out of the top ten predicted DDIs 

with warfarin, and five out of the top ten predicted DDIs 
with simvastatin were supported by reports in literature 
and multiple databases.

A limitation for the current prediction method is that 
it requires enzyme or transporter information for De. 
Imputing enzymes or transporters for the drug may be a 
possible solution for future study. Another limitation lies 
in the fact that it can only apply to small molecule drugs 
(i.e. not to peptides or nucleic acids). For further improv-
ing prediction, integrating other knowledge may be one 
direction. For example, the population of the transporter 
protein may depend on the cell type and intracellular 
membranes type [36], and therefore, tissue specific popu-
lation data of transporters might help further distinguish 
DDI from non-DDI pairs. For enzymes, the information 
of the drugs such as the inducer, inhibitor, or substrate 
information might help enhance DDI prediction as well. 
Furthermore, associating the information of absorp-
tion, signal transduction pathway, physiological ago-
nism/antagonism, or excretion (e.g. half-life) might help 
improve prediction performance and understand the 
mechanism of DDIs.

Methods
Drug–drug interactions and association data of drug-
enzyme, drug-transporter and drug-target were retrieved 
from DrugBank version 4.1 (downloaded on Sep. 8, 2014) 
[37]. This includes, 4002 drugs with fingerprints (drug 
set M), out of which 925 have drug–drug interaction 
annotations (drug set N, Additional file  1: Text S1) cor-
responding to 24,149 drug–drug interactions, 3448 drug-
enzyme pairs, 1759 drug-transporter pairs, and 15,771 
drug–target pairs. We treated the drug pairs without 
drug–drug interaction reported in DrugBank as non-
DDI pairs. Drug-gene association data (pharmacogenetic 
data) were retrieved from PharmGKB [38] (3262 asso-
ciations, downloaded on Sep. 26, 2014). Protein–protein 
physical interaction data was retrieved from BioGRID 
[39] (168,956 interactions from BIOGRID-ORGANISM-
Homo_sapiens-3.2.117, downloaded on Oct. 21, 2014).

The modeling process contains four steps. First, inter-
action network for each De was constructed; second, the 
structural similarities between Dq and all the drugs in 
the network of De including De were computed; third, 
DDI prediction models were constructed using the 
structural similarities with logistic regression approach; 
finally, 4-fold cross-validation was carried for model 
evaluation.

Figure  4 illustrates a network of De which consists of 
two sub-networks that represent simplified PK and PD 
information (circled by orange and black line in Fig.  4, 
respectively). Short terms for describing the respective PK 
and PD protein types and associated drugs are provided 
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in Fig.  4, and are used throughout the manuscript. Sub-
network system presenting PD relationship was previ-
ously used by Hansen et al. [40]. Here, our assumption is 
that Dq and De tend to have interactions if the structure 
of Dq is similar to the structures of the drugs in De’s inter-
action network (from D1 through D12).

PK-related sub-network represents relationships 
between: De and the related enzymes (E1 and E2); De 
and its transporters (Tr1 and Tr2); E1, E2 and the drugs 
that interact with them (D1, D2, and D4); E1, E2 and the 
drugs that have pharmacogenetic associations with them 
(D3); Tr1, Tr2 and the drugs that they transport (D5 and 
D7); Tr1, Tr2 and the drugs that have pharmacogeneti-
cally related interactions with them (D6). PD-related sub-
network of De represents relationships between: De and 
its target proteins (T1 in Fig. 4); T1 and other drugs that 
also target T1 (D9); T1 and the drugs that have pharma-
cogenetic association with T1 (D10); T1 and the proteins 
that physically interact with T1 (P1 and P2); P1 and P2 
and the drugs that target them (D8 and D12); and P1 and 
P2 and the drugs that have pharmacogenetic associations 
with them (D11).

Our approach requires only structural similari-
ties as the input to predict DDIs. In this work, we used 
PubChem 2D fingerprint [41] and Tanimoto coefficient 
to calculate structural similarities. Seven structural simi-
larity scores (i.e. Sd, Se, Seg, Str, Strg, Sta, and Stag as defined 

below) using different drug subset in De’s network were 
used to build DDI prediction models with logistic regres-
sion approach. Independent variables for the regression 
models were the scores, and the values for the dependent 
variable were 1 for DDI pairs and 0 for non-DDI pairs, 
respectively.

Score type definitions
Sd: the similarity score between Dq and De.
Se: the maximum similarity score between Dq and 
the drugs in the network of De that interact with the 
enzymes of De (D1, D2, and D4). Se =  max (Se1, Se2, 
Se3) in Fig. 4.
Seg: the maximum similarity score between Dq and the 
drugs in the network of De that have pharmacogenetic 
associations with the genes of the enzymes of De (D3). 
Seg = Seg1 in Fig. 4.
Str: the maximum similarity score between Dq and the 
drugs in the network of De that are transported by the 
same transporters of De (D5 and D7). Str = max (Str1, 
Str2) in Fig. 4.
Strg: the maximum similarity score between Dq and 
the drugs in the network of De that have pharmacoge-
netic associations with the genes of the transporters of 
De (D6). Strg = Strg1 in Fig. 4.
Sta: the maximum similarity score between Dq and the 
drugs in the network of De that have physical interac-

Fig. 4 Example of a network examining relationship between two drugs (Dq and De). Dq: a query drug, for which potential DDIs are predicted with 
a drug under examination, De; T1: a target protein for De (source DrugBank); P1, P2: proteins that have physical interactions with T1 (source BioGRID); 
E1, E2: enzymes of De (source DrugBank); Tr1, Tr2: transporters of De (source DrugBank); D1 through D12: drugs associating with the proteins includ-
ing T1, P1, P2, E1, E2, Tr1, and Tr2 in the network; protein–protein interaction (source BioGRID): purple line; pharmacogenetic association (source 
PharmGKB): blue line; PK-related interaction (source DrugBank): brown line; drug-target interaction (source DrugBank): green line. Sd, Se1, Se2, Se3, Seg1, 
Str1, Str2, Strg1, Sta1, Sta2, Sta3, Stag1, Stag2: similarity scores between Dq and drugs in De’s network (D1 through D12)
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tions with the target proteins of De (D9), or the pro-
teins that have physical interactions with the targets 
(D8, D12). Sta = max (Sta1, Sta2, Sta3) in Fig. 4.
Stag: the maximum similarity score between Dq and the 
drugs in the network of De that have pharmacogenetic 
associations with the genes of the target proteins of De 
(D10) or the proteins that have physical interactions 
with the targets (D11). Stag = max (Stag1, Stag2) in Fig. 4.

Structural similarities were calculated for each drug in 
set N against the drugs in set M. If there was no drug 
for a category in Se, Seg, Str, Strg Sta, or Stag, a score −10 
was assigned, which was empirically chosen for the con-
venience of handling scores. In all networks, Dq and De 
were removed when they also appeared as the drugs in 
the network of De. The reason we used maximum scores 
when there are multiple drugs in a sub-network is based 
on the idea that structurally similar drugs likely inter-
act with the same protein and most structurally similar 
drugs probably most effectively interact with the pro-
tein and therefore have most influence on the DDI. To 
assess the regression models, 4-fold cross-validation was 
carried out for each score set (Table  1). To construct 
the training and test sets, drugs with no DDIs for each 
Dq were randomly chosen to achieve a ratio of 1:1 for 
the number of the DDI pairs over that of the non-DDI 
pairs for each Dq. Since we chose drugs from a pool of 
a large number of drugs with non-DDI for Dq to con-
struct a balanced classification (DDI pairs:non-DDI 
pairs = 1:1), we were concerned about the bias brought 
by the selection of the non-DDI drugs. To examine 
this, we chose non-DDI drugs randomly while fixing 
the number of DDI drugs, built models, evaluated, and 
repeated 10 times. The standard deviations of the AUC 
ranged from 0.000 to 0.019 suggesting that the models 
were stable, i.e. the selection of non-DDI drugs did not 
affect the results. If De was the only drug in its network, 
it was not included in any data set. The numbers of DDI 
and non-DDI pairs for each score set in each test set 
were provided in Additional file 1: Table S3. The logistic 
regression models were trained by using the glm method 
implemented in caret [42], a popular R [43] package. The 
scores were preprocessed using the preProcess function 
in caret for scaling and centering the data. The results of 
4-fold cross-validation showed that the standard devia-
tions of AUC ranged from 0.002 to 0.019 (Additional 
file 1: Table S3, Figure S1). Since some of the score sets 
are nested (i.e. some of the score set for a model is in a 
part of the score set in other models), ANOVA p-values 
were computed using the anova() function in R with the 
Chi square test to compare models that have nested rela-
tionships with the model using score Set 1. All ANOVA 
results indicated that using multiple and combined 

scores improved the performance of the model by show-
ing that the reduction in the deviance is statistically 
significant.

The Logistic function is expressed as following:

where t = β0 + β1s1 + · · · + βnsn
Here, s represents each score (Sd, Se, Seg, Str, Strg, Sta, or 

Stag), β represents each coefficient, and n represents the 
number of scores used to construct a model (1 through 7 
scores) depending on the score set that the model used.
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