536 research outputs found

    Simulation of SU(2) Dynamical Fermion at Finite Chemical Potential and at Finite Temperature

    Get PDF
    SU(2) lattice gauge theory with dynamical fermion at non-zero chemical potential and at finite temperature is studied. We focus on the influence of chemical potential for quark condensate and mass of pseudoscalar meson at finite temperature. Hybrid Monte Carlo simulations with Nf=8N_f=8 staggered fermions are carried out on 12×12×24×412 \times 12\times 24 \times 4 lattice. At β=1.1\beta=1.1 and mq=m_{q}=0.05,0.07,0.1, we calculate the quark condensate and masses of pseudoscalar meson consisting of light and heavier quarks for chemical potential μ=\mu= 0.0,0.02,0.05,0.1,0.2.Comment: Proceedings of the International Workshop on Nonperturbative Methods and Lattice QCD, Guangzhou, Chin

    Responses of quark condensates to the chemical potential

    Get PDF
    The responses of quark condensates to the chemical potential, as a function of temperature T and chemical potential \mu, are calculated within the Nambu--Jona-Lasinio (NJL) model. We compare our results with those from the recent lattice QCD simulations [QCD-TARO Collaboration, Nucl. Phys. B (Proc. Suppl.) 106, 462 (2002)]. The NJL model and lattice calculations show qualitatively similar behavior, and they will be complimentary ways to study hadrons at finite density. The behavior above T_c requires more elaborated analyses.Comment: 3 pages, 2 figs, based on a contribution to the Prof. Osamu Miyamura memorial symposium, Hiroshima University, Nov. 16-17, 2001; slightly revised, accepted for publication in Physical Review

    Systematic study of autocorrelation time in pure SU(3) lattice gauge theory

    Full text link
    Results of our autocorrelation measurement performed on Fujitsu AP1000 are reported. We analyze (i) typical autocorrelation time, (ii) optimal mixing ratio between overrelaxation and pseudo-heatbath and (iii) critical behavior of autocorrelation time around cross-over region with high statistic in wide range of β\beta for pure SU(3) lattice gauge theory on 848^4, 16416^4 and 32432^4 lattices. For the mixing ratio K, small value (3-7) looks optimal in the confined region, and reduces the integrated autocorrelation time by a factor 2-4 compared to the pseudo-heatbath. On the other hand in the deconfined phase, correlation times are short, and overrelaxation does not seem to matter For a fixed value of K(=9 in this paper), the dynamical exponent of overrelaxation is consistent with 2 Autocorrelation measurement of the topological charge on 323×6432^3 \times 64 lattice at β\beta = 6.0 is also briefly mentioned.Comment: 3 pages of A4 format including 7-figure

    Effects of Chemical Potential on Hadron Masses in the Phase Transition Region

    Get PDF
    We study the response of hadron masses with respect to chemical potential at μ=0\mu=0. Our preliminary results of the pion channel show that m/μ\partial m/\partial \mu in the confinement phase is significantly larger than that in the deconfinement phase, which is consistent with the chiral restoration.Comment: LATTICE99 (finite temperature and density), 3 pages, 3 figure

    Reducing Residual-Mass Effects for Domain-Wall Fermions

    Full text link
    It has been suggested to project out a number of low-lying eigenvalues of the four-dimensional Wilson--Dirac operator that generates the transfer matrix of domain-wall fermions in order to improve simulations with domain-wall fermions. We investigate how this projection method reduces the residual chiral symmetry-breaking effects for a finite extent of the extra dimension. We use the standard Wilson as well as the renormalization--group--improved gauge action. In both cases we find a substantially reduced residual mass when the projection method is employed. In addition, the large fluctuations in this quantity disappear.Comment: 18 pages, 10 figures, references updated, comments adde

    Autocorrelation in Updating Pure SU(3) Lattice Gauge Theory by the use of Overrelaxed Algorithms

    Full text link
    We measure the sweep-to-sweep autocorrelations of blocked loops below and above the deconfinement transition for SU(3) on a 16416^4 lattice using 20000-140000 Monte-Carlo updating sweeps. A divergence of the autocorrelation time toward the critical β\beta is seen at high blocking levels. The peak is near β\beta = 6.33 where we observe 440 ±\pm 210 for the autocorrelation time of 1×11\times 1 Wilson loop on 242^4 blocked lattice. The mixing of 7 Brown-Woch overrelaxation steps followed by one pseudo-heat-bath step appears optimal to reduce the autocorrelation time below the critical β\beta. Above the critical β\beta, however, no clear difference between these two algorithms can be seen and the system decorrelates rather fast.Comment: 4 pages of A4 format including 6-figure

    Finite Temperature Gauge Theory on Anisotropic Lattices

    Get PDF
    The finite temperature transition of QCD can be seen as a change in the structure of the hadrons and as a symmetry breaking transition -- a change in the structure of the vacuum. These phenomena are observed differently and carry complementary information. We aim at a correlated analysis involving hadronic correlators and the vacuum structure including field and density correlations, both non-trivial questions.Comment: 3 pages, Talk presented at LATTICE96(finite temperature
    corecore