220 research outputs found

    Rhodobacter johrii sp. nov., an endospore-producing cryptic species isolated from semi-arid tropical soils

    Get PDF
    An oval to rod shaped phototrophic purple nonsulfur bacterium, strain JA192T was isolated from an enrichment culture of a pasteurized rhizosphere soil sample of jowar crop collected from Godumakunta village, near Hyderabad, India. Strain JA192T is Gram-negative, motile and produces endospores. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that the strain JA192T is closely related to Rhodobacter sphaeroides DSM 158T (99.9% sequence similarity), Rhodobacter megalophilus JA194T (99.8%) and Rhodobacter azotoformans JCM 9340T (98.1%) and clusters with other species of the genus Rhodobacter of the family Rhodobacteraceae. However, DNA-DNA hybridization with Rba. sphaeroides DSM 158T, Rba. megalophilus JA194T and Rba. azotoformans JCM 9320T showed a relatedness of only 38-57% with respect to JA192T. On the basis of 16S rRNA gene sequence analysis, DNA-DNA hybridization data, morphological, physiological and chemotaxanomic characters, strain JA192T represents a novel species of the genus Rhodobacter, for which the name Rhodobacter johrii sp. nov. is proposed. The type strain is JA192T (= DSM 18678T = JCM 14543T = MTCC 8172T)

    Cloning and Characterization of Genes Involved in Nostoxanthin Biosynthesis of Sphingomonas elodea ATCC 31461

    Get PDF
    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2′-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2′-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed

    Regression Analysis of PEM Fuel Cell Transient Response

    Get PDF
    To develop operating strategies in polymer electrolyte membrane (PEM) fuel cell-powered applications, precise computationally efficient models of the fuel cell stack voltage are required. Models are needed for all operating conditions, including transients. In this work, transient evolutions of voltage, in response to load changes, are modeled with a sum of three exponential decay functions. Amplitude factors are correlated to steady-state operating data (temperature, humidity, average current, resistance, and voltage). The obtained time constants reflect known processes of the membrane heat/water transport. These model parameters can form the basis for the prediction of voltage overshoot/undershoot used in computational-based control systems, used in real-time simulation. Furthermore, the results provide an empirical basis for the estimation of the magnitude of temporary voltage loss to be expected with sudden load changes, as well as a systematic method for the analysis of experimental data. Its applicability is currently limited to thin membranes with low to moderate humidity gases, and with adequately high reactant-gas stoichiometry

    Diverse Arrangement of Photosynthetic Gene Clusters in Aerobic Anoxygenic Phototrophic Bacteria

    Get PDF
    BACKGROUND: Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be important players in carbon cycling in the ocean. METHODOLOGY/PRINCIPAL FINDINGS: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone, spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains contained some of the carotenoid biosynthetic pathway genes outside of the PGC. CONCLUSIONS/SIGNIFICANCE: Our investigations shed light on the evolution and functional implications in PGCs of marine aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically scattered among Proteobacteria

    De Novo Transcriptomic Analysis of an Oleaginous Microalga: Pathway Description and Gene Discovery for Production of Next-Generation Biofuels

    Get PDF
    Background: Eustigmatos cf. polyphem is a yellow-green unicellular soil microalga belonging to the eustimatophyte with high biomass and considerable production of triacylglycerols (TAGs) for biofuels, which is thus referred to as an oleaginous microalga. The paucity of microalgae genome sequences, however, limits development of gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for a non-model microalgae species, E. cf. polyphem, and identify pathways and genes of importance related to biofuel production. Results: We performed the de novo assembly of E. cf. polyphem transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 29,199,432 sequencing reads corresponding to 2.33 Gb total nucleotides. These reads were assembled into 75,632 unigenes with a mean size of 503 bp and an N50 of 663 bp, ranging from 100 bp to.3,000 bp. Assembled unigenes were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. These analyses identified the majority of carbohydrate, fatty acids, TAG and carotenoids biosynthesis and catabolism pathways in E. cf. polyphem. Conclusions: Our data provides the construction of metabolic pathways involved in the biosynthesis and catabolism of carbohydrate, fatty acids, TAG and carotenoids in E. cf. polyphem and provides a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character o

    Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    Get PDF
    BACKGROUND: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. CONCLUSIONS/SIGNIFICANCE: Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a "bramble" model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic "root". Structural diversification may be constrained ("trimmed") where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification

    Localization and function of the renal calcium-sensing receptor

    Get PDF
    The ability to monitor changes in the ionic composition of the extracellular environment is a crucial feature that has evolved in all living organisms. The cloning and characterization of the extracellular calcium-sensing receptor (CaSR) from the mammalian parathyroid gland in the early 1990s provided the first description of a cellular, ion-sensing mechanism. This finding demonstrated how cells can detect small, physiological variations in free ionized calcium (Ca 2+) in the extracellular fluid and subsequently evoke an appropriate biological response by altering the secretion of parathyroid hormone (PTH) that acts on PTH receptors expressed in target tissues, including the kidney, intestine, and bone. Aberrant Ca 2+ sensing by the parathyroid glands, as a result of altered CaSR expression or function, is associated with impaired divalent cation homeostasis. CaSR activators that mimic the effects of Ca 2+ (calcimimetics) have been designed to treat hyperparathyroidism, and CaSR antagonists (calcilytics) are in development for the treatment of hypercalciuric disorders. The kidney expresses a CaSR that might directly contribute to the regulation of many aspects of renal function in a PTH-independent manner. This Review discusses the roles of the renal CaSR and the potential impact of pharmacological modulation of the CaSR on renal function
    • …
    corecore