1,031 research outputs found

    A self-consistent first-principles calculation scheme for correlated electron systems

    Full text link
    A self-consistent calculation scheme for correlated electron systems is created based on the density-functional theory (DFT). Our scheme is a multi-reference DFT (MR-DFT) calculation in which the electron charge density is reproduced by an auxiliary interacting Fermion system. A short-range Hubbard-type interaction is introduced by a rigorous manner with a residual term for the exchange-correlation energy. The Hubbard term is determined uniquely by referencing the density fluctuation at a selected localized orbital. This strategy to obtain an extension of the Kohn-Sham scheme provides a self-consistent electronic structure calculation for the materials design. Introducing an approximation for the residual exchange-correlation energy functional, we have the LDA+U energy functional. Practical self-consistent calculations are exemplified by simulations of Hydrogen systems, i.e. a molecule and a periodic one-dimensional array, which is a proof of existence of the interaction strength U as a continuous function of the local fluctuation and structural parameters of the system.Comment: 23 pages, 8 figures, to appear in J. Phys. Condens. Matte

    Entropy production by Q-ball decay for diluting long-lived charged particles

    Full text link
    The cosmic abundance of a long-lived charged particle such as a stau is tightly constrained by the catalyzed big bang nucleosynthesis. One of the ways to evade the constraints is to dilute those particles by a huge entropy production. We evaluate the dilution factor in a case that non-relativistic matter dominates the energy density of the universe and decays with large entropy production. We find that large Q balls can do the job, which is naturally produced in the gauge-mediated supersymmetry breaking scenario.Comment: 8 pages, 1 figur

    Excitation Spectrum of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain:

    Full text link
    The natural explanation of the excitation spectrum of the spin-1 antiferromagnetic Heisenberg chain is given from the viewpoint of the spin-1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain. The energy spectrum of the latter is calculated with fixed momentum kk by numerical diagonalization of finite size systems. It consists of a branch of propagating triplet pair (triplet wave) and the continuum of multiple triplet waves for weak ferromagnetic coupling. As the ferromagnetic coupling increases, the triplet wave branch is absorbed in the continuum for small kk, reproducing the characteristics of the spin-1 antiferromagnetic Heisenberg chain.Comment: 12 Pages REVTEX, Postscript file for the figures included. SKPH-94-C00

    Cantor Spectra for Double Exchange Model

    Full text link
    We numerically study energy spectra and localization properties of the double exchange model at irrational filling factor. To obtain variational ground state, we use a mumerical technique in momentum space by ``embedded'' boundary condition which has no finite size effect a priori. Although the Hamiltonian has translation invariance, the ground state spontaneously exhibits a self-similarity. Scaling and multi-fractal analysis for the wave functions are performed and the scaling indices α\alpha's are obtained. The energy spectrum is found to be a singular continuous, so-called the Cantor set with zero Lebesque measure.Comment: 4 pages, 4 figures, revtex, corrected some typos, accepted for publication in PR

    Thermodynamics of doped Kondo insulator in one dimension: Finite Temperature DMRG Study

    Full text link
    The finite-temperature density-matrix renormalization-group method is applied to the one-dimensional Kondo lattice model near half filling to study its thermodynamics. The spin and charge susceptibilities and entropy are calculated down to T=0.03t. We find two crossover temperatures near half filling. The higher crossover temperature continuously connects to the spin gap at half filling, and the susceptibilities are suppressed around this temperature. At low temperatures, the susceptibilities increase again with decreasing temperature when doping is finite. We confirm that they finally approach to the values obtained in the Tomonaga-Luttinger (TL) liquid ground state for several parameters. The crossover temperature to the TL liquid is a new energy scale determined by gapless excitations of the TL liquid. The transition from the metallic phase to the insulating phase is accompanied by the vanishing of the lower crossover temperature.Comment: 4 pages, 7 Postscript figures, REVTe

    Early phase observations of extremely luminous Type Ia Supernova 2009dc

    Get PDF
    We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is Δm15(B)=0.65±0.03\Delta m_{15}(B)=0.65\pm 0.03, which is one of the slowest among SNe Ia. The peak VV-band absolute magnitude is MV=19.90±0.15M_{V}=-19.90\pm 0.15 mag even if the host extinction is AV=0A_{V}=0 mag. It reaches MV=20.19±0.19M_{V}=-20.19\pm 0.19 mag for the host extinction of AV=0.29A_{V}=0.29 mag as inferred from the observed Na {\sc i} D line absorption in the host. Our JHKsJHK_{s}-band photometry shows that the SN is one of the most luminous SNe Ia also in near-infrared wavelengths. These results indicate that SN 2009dc belongs to the most luminous class of SNe Ia, like SN 2003fg and SN 2006gz. We estimate the ejected 56^{56}Ni mass of 1.2±0.31.2\pm 0.3 \Msun for no host extinction case (or 1.6±\pm 0.4 M_{\odot} for the host extinction of AV=0.29A_{V}=0.29 mag). The C {\sc ii} λ\lambda6580 absorption line keeps visible until a week after maximum, which diminished in SN 2006gz before its maximum brightness. The line velocity of Si {\sc ii} λ\lambda6355 is about 8000 km s1^{-1} around the maximum, being considerably slower than that of SN 2006gz, while comparable to that of SN 2003fg. The velocity of the C {\sc ii} line is almost comparable to that of the Si {\sc ii}. The presence of the carbon line suggests that thick unburned C+O layers remain after the explosion. SN 2009dc is a plausible candidate of the super-Chandrasekhar mass SNe Ia

    Alternating Heisenberg Spin-1/2 Chains in a Transverse Magnetic Field

    Full text link
    The ground state phase diagram of the alternating spin-1/2 chains with anisotropic ferromagnetic coupling under the influence of a symmetry breaking transverse magnetic field is studied. We have used the exact diagonalization technique. In the limit where the antiferromagnetic coupling is dominant, we have identified two Ising-type quantum phase transitions. We have calculated two critical fields hc1h_{c_{1}} and hc2h_{c_{2}}, corresponding to the transition between different magnetic phases of the system. It is found that the intermediate state (hc1<h<hc2h_{c_{1}}<h<h_{c_{2}}) is gapful, describing the stripe-antiferromagnetic phase.Comment: 6 pages, 7 figure
    corecore