39,453 research outputs found

    Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects

    Get PDF
    A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads

    Quantum Spin Chains and Riemann Zeta Function with Odd Arguments

    Get PDF
    Riemann zeta function is an important object of number theory. It was also used for description of disordered systems in statistical mechanics. We show that Riemann zeta function is also useful for the description of integrable model. We study XXX Heisenberg spin 1/2 anti-ferromagnet. We evaluate a probability of formation of a ferromagnetic string in the anti-ferromagnetic ground state in thermodynamics limit. We prove that for short strings the probability can be expressed in terms of Riemann zeta function with odd arguments.Comment: LaTeX, 7 page

    Integrable Magnetic Model of Two Chains Coupled by Four-Body Interactions

    Full text link
    An exact solution for an XXZ chain with four-body interactions is obtained and its phase diagram is determined. The model can be reduced to two chains coupled by four-body interactions, and it is shown that the ground state of the two-chain model is magnetized in part. Furthermore, a twisted four-body correlation function of the anti-ferromagnetic Heisenberg chain is obtained.Comment: 7 pages, LaTeX, to be published in J. Phys. Soc. Jpn., rederived the mode

    The Free Energy and the Scaling Function of the Ferromagnetic Heisenberg Chain in a Magnetic Field

    Full text link
    A nonlinear susceptibilities (the third derivative of a magnetization mSm_S by a magnetic field hh ) of the SS=1/2 ferromagnetic Heisenberg chain and the classical Heisenberg chain are calculated at low temperatures T.T. In both chains the nonlinear susceptibilities diverge as T6T^{-6} and a linear susceptibilities diverge as T2.T^{-2}. The arbitrary spin SS Heisenberg ferromagnet [[ H=i=1N{JSiSi+1(h/S)Siz}{\cal H} = \sum_{i=1}^{N} \{ - J{\bf S}_{i} {\bf S}_{i+1} - (h/S) S_{i}^{z} \} (J>0),(J>0), ]] has a scaling relation between mS,m_S, hh and T:T: mS(T,h)=F(S2Jh/T2).m_S(T,h) = F( S^2 Jh/T^2). The scaling function F(x)F(x)=(2xx/3)-(44x3x^{3}/135) + O(x5x^{5}) is common to all values of spin S.S.Comment: 16 pages (revtex 2.0) + 6 PS figures upon reques

    Revolving rivers in sandpiles: from continuous to intermittent flows

    Full text link
    In a previous paper [Phys. Rev. Lett. 91, 014501 (2003)], the mechanism of "revolving rivers" for sandpile formation is reported: as a steady stream of dry sand is poured onto a horizontal surface, a pile forms which has a river of sand on one side owing from the apex of the pile to the edge of the base. For small piles the river is steady, or continuous. For larger piles, it becomes intermittent. In this paper we establish experimentally the "dynamical phase diagram" of the continuous and intermittent regimes, and give further details of the piles topography, improving the previous kinematic model to describe it and shedding further light on the mechanisms of river formation. Based on experiments in Hele-Shaw cells, we also propose that a simple dimensionality reduction argument can explain the transition between the continuous and intermittent dynamics.Comment: 8 pages, 11 figures, submitted to Phys Rev

    Accurate Evolutions of Orbiting Binary Black Holes

    Get PDF
    We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Brügmann et al. [Phys. Rev. Lett. 92, 211101 (2004)]. For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM

    Pre-K-Edge Structure on Anomalous X-Ray Scattering in LaMnO3

    Full text link
    We study the pre-K-edge structure of the resonant X-ray scattering for forbidden reflections (anomalous scattering) in LaMnO3, using the band calculation based on the local density approximation. We find a two-peak structure with an intensity approximately 1/100 of that of the main peak. This originates from a mixing of 4p states of Mn to 3d states of neighboring Mn sites. The effect is enhanced by an interference with the tail of the main peak. The effect of the quadrupole transition is found to be one order of magnitude smaller than that of the dipole transition, modifying slightly the azimuthal-angle dependence.Comment: 4 pages, 5 figures, submitted to J. Phys. Soc. Jp

    Level truncation analysis of exact solutions in open string field theory

    Full text link
    We evaluate vacuum energy density of Schnabl's solution using the level truncation calculation and the total action including interaction terms. The level truncated solution provides vacuum energy density expected both for tachyon vacuum and trivial pure gauge. We discuss the role of the phantom term to reproduce correct vacuum energy.Comment: 11 pages, 6 figures,v2: 1 figure replace
    corecore