216 research outputs found

    Optimal Protocol for Contrast-enhanced Free-running 5D Whole-heart Coronary MR Angiography at 3T.

    Get PDF
    Free-running 5D whole-heart coronary MR angiography (MRA) is gaining in popularity because it reduces scanning complexity by removing the need for specific slice orientations, respiratory gating, or cardiac triggering. At 3T, a gradient echo (GRE) sequence is preferred in combination with contrast injection. However, neither the injection scheme of the gadolinium (Gd) contrast medium, the choice of the RF excitation angle, nor the dedicated image reconstruction parameters have been established for 3T GRE free-running 5D whole-heart coronary MRA. In this study, a Gd injection scheme, RF excitation angles of lipid-insensitive binominal off-resonance RF excitation (LIBRE) pulse for valid fat suppression and continuous data acquisition, and compressed-sensing reconstruction regularization parameters were optimized for contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence at 3T. Using this optimized protocol, contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence is feasible with good image quality at 3T

    Marked lateral deviation of the phrenic nerve due to variant origin and course of the thyrocervical trunk: a cadaveric study

    Get PDF
    Phrenic nerve impairment can often lead to serious respiratory disorders under various pathological conditions. During routine dissection of an 88-year-old Japanese male cadaver, a victim of heart failure, we recognized an extremely rare variation of the right thyrocervical trunk arising from the subclavian artery laterally to the anterior scalene muscle. In addition to that, the ipsilateral phrenic nerve was drawn and displaced remarkably laterad by this vessel. We examined all of the branches arising from subclavian arteries, phrenic nerves and diaphragm muscles. The embryological background of this arterial variation is considered. The marked displacement with prolonged strain had a potential to cause phrenic nerve impairment with an atrophic change of the diaphragm muscle. Recently many image diagnostic technologies have been developed and are often used. However, it is still possible that rare variations like this case may be overlooked and can only be recognized by intimate regional examination while keeping these rare variations in mind

    Polymorphisms in the RNASE3 Gene Are Associated with Susceptibility to Cerebral Malaria in Ghanaian Children

    Get PDF
    BACKGROUND: Cerebral malaria (CM) is the most severe outcome of Plasmodium falciparum infection and a major cause of death in children from 2 to 4 years of age. A hospital based study in Ghana showed that P. falciparum induces eosinophilia and found a significantly higher serum level of eosinophil cationic protein (ECP) in CM patients than in uncomplicated malaria (UM) and severe malaria anemia (SA) patients. Single nucleotide polymorphisms (SNPs) have been described in the ECP encoding-gene (RNASE3) of which the c.371G>C polymorphism (rs2073342) results in an arginine to threonine amino acid substitution p.R124T in the polypeptide and abolishes the cytotoxicity of ECP. The present study aimed to investigate the potential association between polymorphisms in RNASE3 and CM. METHODOLOGY/PRINCIPAL FINDINGS: The RNASE3 gene and flanking regions were sequenced in 206 Ghanaian children enrolled in a hospital based malaria study. An association study was carried out to assess the significance of five SNPs in CM (n=45) and SA (n=56) cases, respectively. The two severe case groups (CM and SA) were compared with the non-severe control group comprising children suffering from UM (n=105). The 371G allele was significantly associated with CM (p=0.00945, OR=2.29, 95% CI=1.22-4.32) but not with SA. Linkage disequilibrium analysis demonstrated significant linkage between three SNPs and the haplotype combination 371G/*16G/*94A was strongly associated with susceptibility to CM (p=0.000913, OR=4.14, 95% CI=1.79-9.56), thus, defining a risk haplotype. The RNASE3 371GG genotype was found to be under frequency-dependent selection. CONCLUSIONS/SIGNIFICANCE: The 371G allele of RNASE3 is associated with susceptibility to CM and forms part of a risk associated haplotype GGA defined by the markers: rs2073342 (G-allele), rs2233860 (G-allele) and rs8019343 (A-allele) respectively. Collectively, these results suggest a hitherto unrecognized role for eosinophils in CM pathogenesis

    Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE<sub>2 </sub>cell surface receptors (EP 1–4) to examine the mechanisms by which PGE<sub>2 </sub>regulates tumour progression.</p> <p>Methods</p> <p>Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue.</p> <p>Results</p> <p>EP4 was the most abundant subtype of PGE<sub>2 </sub>receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE<sub>2 </sub>generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 μM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE<sub>2 </sub>(1 μM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21<sup>WAF1/CIP1 </sup>expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21<sup>WAF1/CIP1 </sup>was also seen with PD153025 (1 μM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted.</p> <p>Conclusion</p> <p>COX-2 regulates cell cycle transition via EP4 receptor and altered p21<sup>WAF1/CIP1 </sup>expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.</p

    Effects of nano particles on antigen-related airway inflammation in mice

    Get PDF
    BACKGROUND: Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation. METHODS: ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied. RESULTS: Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG(1 )and IgE. CONCLUSION: Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6

    Suitability of the predatory mites Iphiseiodes zuluagai and Euseius concordis in controlling Polyphagotarsonemus latus and Tetranychus bastosi on Jatropha curcas plants in Brazil

    Get PDF
    One of the most promising plant species for biofuel production in Brazil is the physic nut Jatropha curcas. Major phytosanitary problems include the attack of two pest mite species, the broad mite Polyphagotarsonemus latus and the spider mite Tetranychus bastosi. Owing to pesticide-related problems, there is an increasing demand for sustainable environmental-friendly control methods such as biological control. In this study we evaluated the suitability of the predatory mite species Iphiseiodes zuluagai and Euseius concordis in controlling P. latus and T. bastosi on J. curcas. The number of T. bastosi killed by I. zuluagai was lower than the number of P. latus consumed.Euseius concordis preyed upon both T. bastosi and P. latus but the number of prey killed was always lower in comparison with I. zuluagai. However, P. latus and T. bastosi are suitable for the development of I. zuluagai and E. concordis as oviposition of both predators did not differ in relation to prey species. The preference of I. zuluagai for leaves of plants infested by either P. latus or T. bastosi, combined with the higher values for predation obtained by this predatory mite when fed on P. latus, compared to those values obtained by E. concordis, suggests that I. zuluagai can be more efficient than E. concordis in reducing populations of P. latus and T. bastosi under field conditions. Furthermore, we report here on the first record of predatory mites associated with P. latus and T. bastosi on native J. curcas plants in Brazil. In conclusion, we emphasize the crucial importance of predatory mites as agents of natural biological control of mite pests on J. curcas in small farms

    Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis

    Get PDF
    Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75432/1/j.1365-2222.2006.02498.x.pd

    Analysing the eosinophil cationic protein - a clue to the function of the eosinophil granulocyte

    Get PDF
    Eosinophil granulocytes reside in respiratory mucosa including lungs, in the gastro-intestinal tract, and in lymphocyte associated organs, the thymus, lymph nodes and the spleen. In parasitic infections, atopic diseases such as atopic dermatitis and asthma, the numbers of the circulating eosinophils are frequently elevated. In conditions such as Hypereosinophilic Syndrome (HES) circulating eosinophil levels are even further raised. Although, eosinophils were identified more than hundred years ago, their roles in homeostasis and in disease still remain unclear. The most prominent feature of the eosinophils are their large secondary granules, each containing four basic proteins, the best known being the eosinophil cationic protein (ECP). This protein has been developed as a marker for eosinophilic disease and quantified in biological fluids including serum, bronchoalveolar lavage and nasal secretions. Elevated ECP levels are found in T helper lymphocyte type 2 (atopic) diseases such as allergic asthma and allergic rhinitis but also occasionally in other diseases such as bacterial sinusitis. ECP is a ribonuclease which has been attributed with cytotoxic, neurotoxic, fibrosis promoting and immune-regulatory functions. ECP regulates mucosal and immune cells and may directly act against helminth, bacterial and viral infections. The levels of ECP measured in disease in combination with the catalogue of known functions of the protein and its polymorphisms presented here will build a foundation for further speculations of the role of ECP, and ultimately the role of the eosinophil
    corecore