1,238 research outputs found

    Residual stress development and evolution in two-phase crystalline material: a discrete dislocation study

    Get PDF
    Crystalline materials undergo heterogeneous deformation upon the application of external load, which results in the development of incompatible elastic strains in the material as soon as the load is removed. The presence of heterogeneous distribution of elastic strains in the absence of any form of external load results in the building up of stresses referred to as residual stresses. The heterogeneity of strain is attributed either to the presence of multiple phases or to the orientation gradients across the sample volume. This paper is an endeavour to model the presence of second phase in a two-dimensional discrete dislocation dynamics framework, which already contains constitutive rules to include three-dimensional mechanisms, such as line tension and dynamic junction formation. The model is used to investigate residual stress development in single crystals subjected to plane strain loading and then subsequently unloaded to study residual stresses. The dislocation accumulation around the second phase and its eïŹ€ect on the mechanical properties is studied. The orientation dependence of residual stresses as a function of the underlying defect substructure has also been explored. A variety of results are obtained. In particular, the development of stresses as a function of underlying defect substructure is also presented and found to depend upon the orientation of the crystal

    Studies on Microbiological Corrosion of Metals: Part I Isolation and Identification of Sulphate Reducing Bacteria from Jodhpur Soil

    Get PDF
    A strain of sulphate reducing bacteria present in Jodhpur soil has been isolate and identified as Desulphovibrio desulphuricans

    The Origin of Jovian Planets in Protostellar Disks: The Role of Dead Zones

    Full text link
    The final masses of Jovian planets are attained when the tidal torques that they exert on their surrounding protostellar disks are sufficient to open gaps in the face of disk viscosity, thereby shutting off any further accretion. In sufficiently well-ionized disks, the predominant form of disk viscosity originates from the Magneto-Rotational Instability (MRI) that drives hydromagnetic disk turbulence. In the region of sufficiently low ionization rate -- the so-called dead zone -- turbulence is damped and we show that lower mass planets will be formed. We considered three ionization sources (X-rays, cosmic rays, and radioactive elements) and determined the size of a dead zone for the total ionization rate by using a radiative, hydrostatic equilibrium disk model developed by Chiang et al. (2001). We studied a range of surface mass density (Sigma_{0}=10^3 - 10^5 g cm^{-2}) and X-ray energy (kT_{x}=1 - 10 keV). We also compared the ionization rate of such a disk by X-rays with cosmic rays and find that the latter dominate X-rays in ionizing protostellar disks unless the X-ray energy is very high (5 - 10 keV). Among our major conclusions are that for typical conditions, dead zones encompass a region extending out to several AU -- the region in which terrestrial planets are found in our solar system. Our results suggest that the division between low and high mass planets in exosolar planetary systems is a consequence of the presence of a dead zone in their natal protoplanetary disks. We also find that the extent of a dead zone is mainly dependent on the disk's surface mass density. Our results provide further support for the idea that Jovian planets in exosolar systems must have migrated substantially inwards from their points of origin.Comment: 28 pages, 10 figures, accepted by Ap

    Salinity and Toxicological Studies of Waters of Rajasthan Desert

    Get PDF
    Detailed studies on quality of ground waters of Western Rajasthan have been carried out by analysing about 1500 water samples for presence of total dissolved solids (TDS) and other normal chemical constituents. 109 ground water samples were tested for presence of 8 toxic substances viz. As, Ba, Cd, Cr/sup +6/, Pb, Se, Ag, and CN and F and NO/sub 3/. About 9 percent of the waters conform to the normal standards of drinking water i.e. contain less than 500 mg/l TDS. None of the water points has been found to be contaminated with toxic substances. However, fluoride and nitrate were present in all the samples.A survey of water-borne diseases, kidney diseases and fluorosis carried out to establish the possible correlation between prevailing diseases and dissolved solids in waters indicate that 82 percent of the reported cases are due to water-borne diseases. The guinea-worm (Dracunculus medinensis) has been found in the surface waters and sulphate reducing bacteria (Desulphovibrio desulphuricans) in the brackish water

    Monoclinic and Correlated Metal Phase in VO_2 as Evidence of the Mott Transition: Coherent Phonon Analysis

    Full text link
    In femtosecond pump-probe measurements, the appearance of coherent phonon oscillations at 4.5 THz and 6.0 THz indicating the rutile metal phase of VO_2 does not occur simultaneously with the first-order metal-insulator transition (MIT) near 68^oC. The monoclinic and correlated metal(MCM) phase between the MIT and the structural phase transition (SPT) is generated by a photo-assisted hole excitation which is evidence of the Mott transition. The SPT between the MCM phase and the rutile metal phase occurs due to subsequent Joule heating. The MCM phase can be regarded as an intermediate non-equilibrium state.Comment: 4 pages, 2 figure

    A necklace of dense cores in the high-mass star forming region G35.20-0.74N: ALMA observations

    Get PDF
    The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.Comment: 24 pages, 26 figures, accepted for publication in Astronomy and Astrophysics (abstract modified to fit arXiv restrictions

    Effects of Preheated Clusters on the CMB Spectrum

    Get PDF
    Mounting evidence from xx-ray observations reveals that bound objects should receive some form of energy in the past injected from non-gravitaional sources. We report that an instantaneous heating scheme, for which gases in dense regions were subjected to a temperature jump of 1keV at z=2z=2 whereas those in rarified regions remained intact, can produce bound objects obeying the observed mass-temperature and luminosity-temperature relations. Such preheating lowers the peak Sunyaev-Zeldovich (SZ) power by a factor of 2 and exacerbates the need for the normalization of matter fluctuations σ8\sigma_8 to assume an extreme high value (∌1.1)(\sim 1.1) for the SZ signals to account for the excess anisotropy on 5-arcminute scale detected by the Cosmic Background Imager in the cosmic microwave background radiation.Comment: 6 pages, 3 figs, submitted to ApJL. Corrected for a normalization problem and one more simulation result is included. Conclusion has been reversed. Motion pictures of simulations can be found at http://asweb.phys.ntu.edu.tw/~tseng/MEMO/SZE.htm

    Strong CH+ J=1-0 emission and absorption in DR21

    Get PDF
    We report the first detection of the ground-state rotational transition of the methylidyne cation CH+ towards the massive star-forming region DR21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR21 molecular ridge and foreground gas. These observations allow us to determine a CH+ J=1-0 line frequency of 835137 +/- 3 MHz, in good agreement with a recent experimental determination. We estimate the CH+ column density to be a few 1e13 cm^-2 in the gas seen in emission, and > 1e14 cm^-2 in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH+]/[H] > 1.2x10^-8. We show that the CH+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines.Comment: Accepted for publication in A&
    • 

    corecore