8 research outputs found

    CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention

    Get PDF
    The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization

    Prevalence of Depression and its Associated Factors Among Adults during Third Wave of COVID-19 Pandemic in Malaysia, 2021

    Get PDF
    Malaysia recently entered third-wave of COVID-19 pandemic starting from October 2020 to end of January 2021. Therefore, objective of our study was to identify the prevalence of depression and its associated factors among adults during third wave of COVID-19 pandemic in Malaysia. A total of 1468 Malaysian adults participated in this cross-sectional web-based survey. A standardized questionnaire was generated using the Google Form, and the link was shared through social media such as Facebook, Twitter, Instagram and WhatsApp. Patient Health Questionnaires (PHQ-9) was used to assess the levels of depression. Among 1468 participants, 320 (22 %) and 358 (24.6 %) indicated to have moderate to severe depression during third-wave of COVID-19 in Malaysia. Multiple predictors were identified that contributed to depression. These included female gender, family’s source income affected by the pandemic, do not perform exercise, victim of abuse and those with family and/or friends infected with COVID-19 virus. COVID-19 pandemic had caused the implementation of lockdown and physical distancing in Malaysia and nations across the globe. The pandemic had brought serious negative impacts on mental health of the adults especially depression especially during third wave of pandemic. The findings of our study suggested that new interventions or strategies are needed to be developed to address the severity of depression among Malaysian adults

    Finite Element Analysis of Connecting Rod of IC Engine

    No full text
    A connecting rod of IC engine is subjected to complex dynamic loading conditions. Therefore it is a critical machine element which attracts researchers’ attention. This paper aims at development of simple 3D model, finite element analyses and the optimization by intuition of the connecting rod for robust design. In this study the detailed load analysis under in-service loading conditions was performed for a typical connecting rod. The CAD model was prepared taking the detailed dimensions from a standard machine drawing text book. Based on the gas pressure variation in the cylinder of an IC engine, the piston forces were calculated for critical positions. MATLAB codes were written for this calculation. Altair Hypermesh and Hyperview were used for pre-processing and post-processing of the model respectively. The finite element analyses were performed using Altair Radioss. The results obtained were compared to a case study for the field failure of the connecting rod. By comparing the induced stress result with the yield strength of the material, the component was redesigned. This was done to save some mass keeping in mind that the induced stress value should be well below the yield strength of the material. The optimized connecting rod is 11.3% lighter than the original design

    Finite Element Analysis of Connecting Rod of IC Engine

    No full text
    A connecting rod of IC engine is subjected to complex dynamic loading conditions. Therefore it is a critical machine element which attracts researchers’ attention. This paper aims at development of simple 3D model, finite element analyses and the optimization by intuition of the connecting rod for robust design. In this study the detailed load analysis under in-service loading conditions was performed for a typical connecting rod. The CAD model was prepared taking the detailed dimensions from a standard machine drawing text book. Based on the gas pressure variation in the cylinder of an IC engine, the piston forces were calculated for critical positions. MATLAB codes were written for this calculation. Altair Hypermesh and Hyperview were used for pre-processing and post-processing of the model respectively. The finite element analyses were performed using Altair Radioss. The results obtained were compared to a case study for the field failure of the connecting rod. By comparing the induced stress result with the yield strength of the material, the component was redesigned. This was done to save some mass keeping in mind that the induced stress value should be well below the yield strength of the material. The optimized connecting rod is 11.3% lighter than the original design

    Finite Element Analysis of Connecting Rod of IC Engine

    No full text
    A connecting rod of IC engine is subjected to complex dynamic loading conditions. Therefore it is a critical machine element which attracts researchers’ attention. This paper aims at development of simple 3D model, finite element analyses and the optimization by intuition of the connecting rod for robust design. In this study the detailed load analysis under in-service loading conditions was performed for a typical connecting rod. The CAD model was prepared taking the detailed dimensions from a standard machine drawing text book. Based on the gas pressure variation in the cylinder of an IC engine, the piston forces were calculated for critical positions. MATLAB codes were written for this calculation. Altair Hypermesh and Hyperview were used for pre-processing and post-processing of the model respectively. The finite element analyses were performed using Altair Radioss. The results obtained were compared to a case study for the field failure of the connecting rod. By comparing the induced stress result with the yield strength of the material, the component was redesigned. This was done to save some mass keeping in mind that the induced stress value should be well below the yield strength of the material. The optimized connecting rod is 11.3% lighter than the original design
    corecore