16 research outputs found

    CFD modeling of transpired solar collectors and characterisation of multi-scale airflow and heat transfer mechanisms

    Get PDF
    Transpired Solar Collectors (TSCs) are building-integrated air-heating systems that are able to fully or partially meet the heating demands of buildings. They convert solar radiation into warm air that can either be used for ventilation, or to heat thermal storage media. TSCs are becoming an increasingly viable alternative to conventional fossil fuel-based heating systems or, more commonly, can be used in a way that is complementary to these systems such that reliance on fossil fuels is reduced. As a consequence TSCs have a potentially important role in meeting future carbon reduction goals. This research has produced a comprehensive numerical model for TSCs based on Computational Fluid Dynamic (CFD) analyses. The model allows parametric studies of key variables and is differentiated from previous models in that it takes full account of factors such as: wind speed and direction, non-uniform flow, turbulent flow, solar radiation intensity, sun position and flow suction rates. It comprises a full size section of cassette-panel TSC that can be easily morphed to reflect a wide range of geometries. A multi-block meshing approach has been employed to reduce grid size and to also resolve jet flows and boundary layers taking place in the plenum and around the absorber plate. Accuracy of the CFD model has been validated against experimental data. Modeling demonstrated that factors such as wind angle have unexpectedly significant adverse effects on system thermal performance. The studies also furthered understanding of key performance attributes including the effects of suction ratio in terms of optimising performance, and the relationship between sun angle and system operating temperature (important for effective operation of heat storage systems). Consideration of these factors is essential if the future performance of TSCs is to be optimised and the technology developed to its fullest potential

    Use of CFD Modelling for Transpired Solar Collectors and Associated Characterization of Multi-Scale Airflow and Heat Transfer Mechanisms

    Get PDF
    Transpired Solar Collectors (TSCs) are façade-integrated solar air-heating systems which comprise perforated wall-mounted cladding or over-cladding panels. The thermal performance of TSCs can be modeled, however current approaches tend to rely on non-realistic assumptions and simplifications, casting doubts over the resulting accuracy. The aim of this research has been to provide a comprehensive numerical model for TSCs using Computational Fluid Dynamics (CFD) able to take full account of factors such as: solar radiation, wind direction, non-uniform flows (particularly around the perforated plate), and the various types of heat transfer that occur. Many of these are not easily modeled using conventional CFD based approaches used for smaller or more easily predictable technologies. The model comprises a full size section of a typical TSC that can be easily morphed. A multi-block meshing approach was used to reduce grid size and to capture jet flows taking place in the plenum region through the perforations. When compared to experimental data over a wide range of climatic conditions, the modeled values of outlet temperatures at the absorber plate and plenum demonstrated a high level of accuracy, giving assurance regarding the validity of the approach. To the authors’ best knowledge, the model represents the most comprehensive TSC simulation tool so far developed

    Origins Space Telescope: Baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins\u27 natural background-limited sensitivity

    The Origins Space Telescope

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryo cooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8 20 m wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 m. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25 588 m, make wide-area and deep spectroscopic surveys with spectral resolving power R ~ 300, and pointed observations at R ~ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins natural background limited sensitivity

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity

    The Origins Space Telescope: mission concept overview

    No full text
    The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology

    The Origins Space Telescope: mission concept overview

    No full text
    The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid-and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore