14 research outputs found

    A note on the uniqueness of minimal maps into Rn\mathbb{R}^n via singular values

    Full text link
    In this note, we derive a uniqueness theorem for minimal graphs of general codimension under certain restrictions closed related to the convexity (not strict convexity) of the area functional with respect to singular values, improving the result in \cite{L-O-T}. The crucial step of the proof is to show the local linearity of the singular value vectors along the geodesic homotopy of two given minimal maps.Comment: 8 page

    Yanghe Decoction Suppresses the Experimental Autoimmune Thyroiditis in Rats by Improving NLRP3 Inflammasome and Immune Dysregulation

    Get PDF
    Inflammation is an important contributor to autoimmune thyroiditis. Yanghe decoction (YH) is a traditional Chinese herbal formulation which has various anti-inflammatory effects. It has been used for the treatment of autoimmune diseases such as ankylosing spondylitis In this study we aimed to investigate the effects of YH on autoimmune thyroiditis in a rat model and elucidate the underlying mechanisms. The experimental autoimmune thyroiditis (EAT) model was established by thyroglobulin (pTG) injections and excessive iodine intake. Thyroid lesions were observed using hematoxylin and eosin (H and E) staining and serum TgAb, TPOAb, TSH, T3, and T4 levels were measured by enzyme-linked immunosorbent assay IL-35 levels were evaluated using real-time polymerase chain reaction (RT-PCR) and Th17/Treg balance in peripheral blood mononuclear cells (PBMCs) was determined by flow cytometry and RT-PCR. Changes in Wnt/β-catenin signaling were evaluated using Western blot. Immunofluorescence staining and western blot were employed to examine NLRP3 inflammasome activation in the thyroid. YH minimized thyroid follicle injury and decreased concentrations of serum TgAb, TPOAb, TSH, T3, and T4 in EAT model. The mRNA of IL-35 was increased after YH treatment. YH also increased the percentage of Treg cells, and decreased Th17 proportion as well as Th17/Treg ratio in PBMCs. Meanwhile, the mRNA levels of Th17 related cytokines (RORγt, IL-17A, IL-21, and IL-22) were suppressed and Treg related cytokines (FoxP3, TGF-β, and IL-10) were promoted in PBMCs. Additionally, the protein expressions of Wnt-1 and β-catenin were unregulated after YH treatment. NLRP3 immunostaining signal and protein levels of IL-17, p-NF-κB, NLRP3, ASC, cleaved-Caspase-1, cleaved-IL-1β, and IL-18 were downregulated in the thyroid after YH intervention. Overall, the present study demonstrated that YH alleviated autoimmune thyroiditis in rats by improving NLRP3 inflammasome and immune dysregulation

    Contribution of Common Modulation Spectral Features to Vocal-Emotion Recognition of Noise-Vocoded Speech in Noisy Reverberant Environments

    No full text
    In one study on vocal emotion recognition using noise-vocoded speech (NVS), the high similarities between modulation spectral features (MSFs) and the results of vocal-emotion-recognition experiments indicated that MSFs contribute to vocal emotion recognition in a clean environment (with no noise and no reverberation). Other studies also clarified that vocal emotion recognition using NVS is not affected by noisy reverberant environments (signal-to-noise ratio is greater than 10 dB and reverberation time is less than 1.0 s). However, the contribution of MSFs to vocal emotion recognition in noisy reverberant environments is still unclear. We aimed to clarify whether MSFs can be used to explain the vocal-emotion-recognition results in noisy reverberant environments. We analyzed the results of vocal-emotion-recognition experiments and used an auditory-based modulation filterbank to calculate the modulation spectrograms of NVS. We then extracted ten MSFs as higher-order statistics of modulation spectrograms. As shown from the relationship between MSFs and vocal-emotion-recognition results, except for extremely high noisy reverberant environments, there were high similarities between MSFs and the vocal emotion recognition results in noisy reverberant environments, which indicates that MSFs can be used to explain such results in noisy reverberant environments. We also found that there are two common MSFs (MSKTk (modulation spectral kurtosis) and MSTLk (modulation spectral tilt)) that contribute to vocal emotion recognition in all daily environments

    Contribution of Common Modulation Spectral Features to Vocal-Emotion Recognition of Noise-Vocoded Speech in Noisy Reverberant Environments

    No full text
    In one study on vocal emotion recognition using noise-vocoded speech (NVS), the high similarities between modulation spectral features (MSFs) and the results of vocal-emotion-recognition experiments indicated that MSFs contribute to vocal emotion recognition in a clean environment (with no noise and no reverberation). Other studies also clarified that vocal emotion recognition using NVS is not affected by noisy reverberant environments (signal-to-noise ratio is greater than 10 dB and reverberation time is less than 1.0 s). However, the contribution of MSFs to vocal emotion recognition in noisy reverberant environments is still unclear. We aimed to clarify whether MSFs can be used to explain the vocal-emotion-recognition results in noisy reverberant environments. We analyzed the results of vocal-emotion-recognition experiments and used an auditory-based modulation filterbank to calculate the modulation spectrograms of NVS. We then extracted ten MSFs as higher-order statistics of modulation spectrograms. As shown from the relationship between MSFs and vocal-emotion-recognition results, except for extremely high noisy reverberant environments, there were high similarities between MSFs and the vocal emotion recognition results in noisy reverberant environments, which indicates that MSFs can be used to explain such results in noisy reverberant environments. We also found that there are two common MSFs (MSKTk (modulation spectral kurtosis) and MSTLk (modulation spectral tilt)) that contribute to vocal emotion recognition in all daily environments

    Research on Interface Modification and Thermal Insulation/Anticorrosive Properties of Vacuum Ceramic Bead Coating

    No full text
    The thermal insulation effect of the coating was closely related to the content of the thermal insulation filler, but too much filler would cause interfacial compatibility problems of various substances in the coating, micro-defects in the coating, and affect the anti–corrosion performance of the coating. Therefore, solving the interface problem was the key to preparing a coating with heat insulation and anticorrosion functions. In this study, organic–inorganic hybrid polymer was used to modify the surface of vacuum ceramic microbeads, and epoxy–silicone resin was used as the film–forming material to prepare a heat-insulating and anticorrosive coating that can withstand 200 °C. The SEM morphology showed that the interface compatibility of the vacuum ceramic beads modified by the organic–inorganic hybrid agent and the film-forming material were improved, the dispersibility was significantly improved, and the beads were tightly arranged; the thermal conductivity of the coating reached 0.1587 W/(m·K), which decreased by 50% after adding 20% ceramic beads, ANSYS finite element simulation showed that the coating has good thermal insulation performance; after the coating underwent a thermal aging test at 200 °C for 600 h, the microstructure was dense, and the low-frequency impedance modulus was still around 109 Ω·cm2. There was no obvious defect in the microstructure after the alternating cold and heat test for 600 h; the low-frequency impedance modulus was still above 108 Ω·cm2, and the low-frequency impedance modulus of the coating was 1010 Ω·cm2 after the 130d immersion test, indicating that the coating had good heat resistance and anti-corrosion performance

    Controllable Sequential Deposition of Planar CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> Perovskite Films via Adjustable Volume Expansion

    No full text
    We demonstrate a facile morphology-controllable sequential deposition of planar CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) film by using a novel volume-expansion-adjustable PbI<sub>2</sub>·<i>x</i>MAI (<i>x</i>: 0.1–0.3) precursor film to replace pure PbI<sub>2</sub>. The use of additive MAI during the first step of deposition leads to the reduced crystallinity of PbI<sub>2</sub> and the pre-expansion of PbI<sub>2</sub> into PbI<sub>2</sub>·<i>x</i>MAI with adjustable morphology, which result in about 10-fold faster formation of planar MAPbI<sub>3</sub> film (without PbI<sub>2</sub> residue) and thus minimize the negative impact of the solvent isopropanol on perovskites during the MAI intercalation/conversion step. The best efficiency obtained for a planar perovskite solar cell based on PbI<sub>2</sub>·0.15MAI is 17.22% (under one sun illumination), which is consistent with the stabilized maximum power output at an efficiency of 16.9%
    corecore