3,634 research outputs found

    SIMPle Dark Matter: Self-Interactions and keV Lines

    Full text link
    We consider a simple supersymmetric hidden sector: pure SU(N) gauge theory. Dark matter is made up of hidden glueballinos with mass mXm_X and hidden glueballs with mass near the confinement scale Λ\Lambda. For mX∼1 TeVm_X \sim 1\,\text{TeV} and Λ∼100 MeV\Lambda \sim 100\,\text{MeV}, the glueballinos freeze out with the correct relic density and self-interact through glueball exchange to resolve small-scale structure puzzles. An immediate consequence is that the glueballino spectrum has a hyperfine splitting of order Λ2/mX∼10 keV\Lambda^2 / m_X \sim 10\,\text{keV}. We show that the radiative decays of the excited state can explain the observed 3.5 keV X-ray line signal from clusters of galaxies, Andromeda, and the Milky Way.Comment: v1: 6 pages, 2 figures; v2: added references, published version; v3: note adde

    Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance.The contribution of MG, KTR and JB was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA). MG and KT gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1. LT’s doctoral studentship is supported by the Alzheimer’s Society in partnership with the Garfield Weston Foundation (grant reference 231). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Interference with the germination and growth of Ulvazoospores by quorum-sensing molecules from Ulva-associated epiphytic bacteria

    Get PDF
    Ulva zoospores preferentially settle on N-acylhomoserine lactone (AHL) producing marine bacterial biofilms. To investigate whether AHL signal molecules also affect the success and rate of zoospore germination in addition to zoospore attraction, the epiphytic bacteria associated with mature Ulva linza were characterized and bacterial isolates representative of this community tested for the ability to produce AHLs. Two of these AHL-producing isolates, Sulfitobacter spp. 376 and Shewanella spp. 79, were transformed with plasmids expressing the Bacillus spp. AHL lactonase gene aiiA to generate AHL-deficient variants. The germination and growth of U. linza zoospores was studied in the presence of these AHL-deficient strains and their AHL-producing counterparts. This revealed that the AHLs produced by Sulfitobacter spp. and Shewanella spp. or the bacterial products they regulate have a negative impact on both zoospore germination and the early growth of the Ulva germling. Further experiments with Escherichia coli biofilms expressing recombinant AHL synthases and synthetic AHLs provide data to demonstrate that zoospores germinated and grown in the absence of AHLs were significantly longer than those germinated in the presence of AHLs. These results reveal an additional role for AHLs per se in the interactive relationships between marine bacteria and Ulva zoospores

    Design optimisation of air-fed full pressurised suits

    Get PDF
    This article is a post-print version of the published article which may be accessed at the link below.The JET machine and associated facilities require significant maintenance and enhancement installation activities in support of the experimental exploitation programme. A proportion of these activities are within radiological and respiratory hazardous environments. As such, breathing air-fed one-piece pressurised suits provide workers with protection from the inhalation of both airborne tritium and beryllium dust. The design of these suits has essentially developed empirically. There is a practical necessity to improve the design to optimise worker performance, protection and thermal comfort. This paper details the complexity of modeling the three-dimensional thermofluid domain between the inner surface of the suit and under garments that includes mass as well as heat transfer, suiting geometry, human metabolism and respiration and effects of limb movements. The methods used include computational fluid dynamics (CFD), theoretical adaptations of mixed-phase turbulent flow, profile scanning of a suit and actuating life size mannequin and data processing of the images and experimental validation trials. The achievements of the current programme and collaborations are presented in the paper and future endeavors are discussed.The author gratefully acknowledges the loan of the articulated mannequin from the Defence Science and Technology Laboratories. This work was funded jointly by EPSRC and by the European Communities under the contract of Association between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was carried out within the framework of EFDA

    Micro- and nanoparticulates for DNA vaccine delivery

    Get PDF
    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial- based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses

    Micro- and nanoparticulates for DNA vaccine delivery

    Get PDF
    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial- based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses

    Self-Interacting Dark Matter from a Non-Abelian Hidden Sector

    Get PDF
    There is strong evidence in favor of the idea that dark matter is self interacting, with the cross section-to-mass ratio σ/m∼1  cm^2/g∼1  barn/GeV. We show that viable models of dark matter with this large cross section are straightforwardly realized with non-Abelian hidden sectors. In the simplest of such models, the hidden sector is a pure gauge theory, and the dark matter is composed of hidden glueballs with a mass around 100 MeV. Alternatively, the hidden sector may be a supersymmetric pure gauge theory with a ∼10  TeV gluino thermal relic. In this case, the dark matter is largely composed of glueballinos that strongly self interact through the exchange of light glueballs. We present a unified framework that realizes both of these possibilities in anomaly-mediated supersymmetry breaking, where, depending on a few model parameters, the dark matter may be composed of hidden glueballinos, hidden glueballs, or a mixture of the two. These models provide simple examples of multicomponent dark matter, have interesting implications for particle physics and cosmology, and include cases where a subdominant component of dark matter may be extremely strongly self interacting, with interesting astrophysical consequences

    Electroweak Corrections to the Top Quark Decay

    Get PDF
    We have calculated the one-loop electroweak corrections to the decay t-> bW+, including the counterterm for the CKM matrix elements V(tb). Previous calculations used an incorrect delta V(tb) that led to a gauge dependent amplitude. However, since the contribution stemming from delta V(tb) is small, those calculations only underestimate the width by roughly one part in 10^5.Comment: 7 pages, 2 figure
    • …
    corecore