4,294 research outputs found

    Elucidating the structural composition of a Fe-N-C catalyst by nuclear and electron resonance techniques

    Get PDF
    Fe–N–C catalysts are very promising materials for fuel cells and metal–air batteries. This work gives fundamental insights into the structural composition of an Fe–N–C catalyst and highlights the importance of an in‐depth characterization. By nuclear‐ and electron‐resonance techniques, we are able to show that even after mild pyrolysis and acid leaching, the catalyst contains considerable fractions of α‐iron and, surprisingly, iron oxide. Our work makes it questionable to what extent FeN4 sites can be present in Fe–N–C catalysts prepared by pyrolysis at 900 °C and above. The simulation of the iron partial density of phonon states enables the identification of three FeN4 species in our catalyst, one of them comprising a sixfold coordination with end‐on bonded oxygen as one of the axial ligands

    The WIMP Forest: Indirect Detection of a Chiral Square

    Get PDF
    The spectrum of photons arising from WIMP annihilation carries a detailed imprint of the structure of the dark sector. In particular, loop-level annihilations into a photon and another boson can in principle lead to a series of lines (a WIMP forest) at energies up to the WIMP mass. A specific model which illustrates this feature nicely is a theory of two universal extra dimensions compactified on a chiral square. Aside from the continuum emission, which is a generic prediction of most dark matter candidates, we find a "forest" of prominent annihilation lines that, after convolution with the angular resolution of current experiments, leads to a distinctive (2-bump plus continuum) spectrum, which may be visible in the near future with the Fermi Gamma-Ray Space Telescope (formerly known as GLAST).Comment: 11 pages, 4 figure

    Autocatalytic plume pinch-off

    Full text link
    A localized source of buoyancy flux in a non-reactive fluid medium creates a plume. The flux can be provided by either heat, a compositional difference between the fluid comprising the plume and its surroundings, or a combination of both. For autocatalytic plumes produced by the iodate-arsenous acid reaction, however, buoyancy is produced along the entire reacting interface between the plume and its surroundings. Buoyancy production at the moving interface drives fluid motion, which in turn generates flow that advects the reaction front. As a consequence of this interplay between fluid flow and chemical reaction, autocatalytic plumes exhibit a rich dynamics during their ascent through the reactant medium. One of the more interesting dynamical features is the production of an accelerating vortical plume head that in certain cases pinches-off and detaches from the upwelling conduit. After pinch-off, a new plume head forms in the conduit below, and this can lead to multiple generations of plume heads for a single plume initiation. We investigated the pinch-off process using both experimentation and simulation. Experiments were performed using various concentrations of glycerol, in which it was found that repeated pinch-off occurs exclusively in a specific concentration range. Autocatalytic plume simulations revealed that pinch-off is triggered by the appearance of accelerating flow in the plume conduit.Comment: 10 figures. Accepted for publication in Phys Rev E. See also http://www.physics.utoronto.ca/nonlinear/papers_chemwave.htm

    NDM-526: INVESTIGATION OF STABLE AND UNSTABLE FIBER-REINFORCED ELASTOMERIC ISOLATORS

    Get PDF
    Fiber-reinforced elastomeric isolators (FREIs) are a potentially low-cost alternative to conventional steel-reinforced elastomeric isolators. FREIs can exhibit a non-linear horizontal force-displacement relationship characterized by a softening and stiffening phase, similar to other adaptive isolation devices such as the triple friction pendulum. This non-linear relationship is a consequence of unique deformations that occur during horizontal displacement denoted as rollover, which causes softening, and full rollover, which causes stiffening. The magnitude of the softening due to rollover is primarily governed by the width-to-total height aspect ratio of the FREI. If the aspect ratio is low, below about 2.5, the isolator may be susceptible to horizontal instability where the tangential stiffness becomes negative before increasing due to full rollover. Design codes prevent the use of an isolation system susceptible to horizontal instability within the design displacement. In this paper, experimental testing is used to calibrate a numerical model of a base isolated structure using horizontally unstable and stable FREIs. The performance of the structure is evaluated based on peak displacement of the isolation layer and peak acceleration of the base isolated structure. For the isolators considered, it is shown that the horizontal instability does not have a negative impact on the performance of the structure. It is postulated that some level of horizontal instability may be allowed in the design of unbonded FREIs

    Higgs Boson with Large Bottom Yukawa Coupling at Tevatron and LHC

    Get PDF
    We study the discovery reach of the Tevatron and the LHC for detecting a Higgs boson (h), predicted in composite models of the electroweak symmetry breaking or in supersymmetric theories, with an enhanced b-quark Yukawa coupling via p \bar{p} / p p \to b \bbar h (\to b \bbar) + X. Our analysis shows that studying this process at the Tevatron Run II or the LHC can provide strong constraints on these models.Comment: Revtex, 4 pages, Corrected 1 reference and a few typographical error

    Frequency-wavenumber spectrum of the free surface of shallow turbulent flows over a rough boundary

    Get PDF
    Data on the frequency-wavenumber spectra and dispersion relation of the dynamic water surface in an open channel flow are very scarce. In this work, new data on the frequency-wavenumber spectra were obtained in a rectangular laboratory flume with a rough bottom boundary, over a range of subcritical Froude numbers. These data were used to study the dispersion relation of the surface waves in such shallow turbulent water flows. The results show a complex pattern of surface waves, with a range of scales and velocities. When the mean surface velocity is faster than the minimum phase velocity of gravity-capillary waves, the wave pattern is dominated by stationary waves that interact with the static rough bed. There is a coherent three-dimensional pattern of radially propagating waves with the wavelength approximately equal to the wavelength of the stationary waves. Alongside these waves, there are freely propagating gravity-capillary waves that propagate mainly parallel to the mean flow, both upstream and downstream. In the flow conditions where the mean surface velocity is slower than the minimum phase velocity of gravity-capillary waves, patterns of non-dispersive waves are observed. It is suggested that these waves are forced by turbulence. The results demonstrate that the free surface carries information about the underlying turbulent flow. The knowledge obtained in this study paves the way for the development of novel airborne methods of non-invasive flow monitoring

    Measuring the W-t-b Interaction at the ILC

    Full text link
    The large top quark mass suggests that the top plays a pivotal role in Electroweak symmetry-breaking dynamics and, as a result, may have modified couplings to Electroweak bosons. Hadron colliders can provide measurements of these couplings at the ~10% level, and one of the early expected triumphs of the International Linear Collider is to reduce these uncertainties to the per cent level. In this article, we propose the first direct measurement of the Standard Model W-t-b coupling at the ILC, from measurements of t tbar-like signals below the t tbar production threshold. We estimate that the ILC with 100 fb^{-1} can measure a combination of the coupling and top width to high precision, and when combined with a direct measurement of the top width from the above-threshold scan, results in a model-independent measurement of the W-t-b interaction of the order of ~ 3%

    Anomalous t-c-g coupling: The connection between single top production and top decay

    Get PDF
    Continuing earlier work, we examine the constraint on an anomalous t-c-g coupling from top quark decay. We find that from current CDF measurements of the branching ratio tWbt \rightarrow W b, the minimum scale at which new physics can strongly modify the t-c-g coupling is \Ltcg \geq about 950 GeV. At the upgraded Tevatron, single top production can constrain \Ltcg \geq 4.5 TeV. The connection between t-c production and the decay tcgt \rightarrow c g is examined, showing how constraints on one lead to a constraint on the other.Comment: 5 pages. Requires epsf.sty to process .eps formatted figure
    corecore