1,522 research outputs found

    Anomalous phase shift in a twisted quantum loop

    Full text link
    Coherent motion of electrons in a twisted quantum ring is considered to explore the effect of torsion inherent to the ring. Internal torsion of the ring composed of helical atomic configuration yields a non-trivial quantum phase shift in the electrons' eigenstates. This torsion-induced phase shift causes novel kinds of persistent current flow and an Aharonov-Bohm like conductance oscillation. The two phenomena can occur even when no magnetic flux penetrates inside the twisted ring, thus being in complete contrast with the counterparts observed in untwisted rings.Comment: 13 paes, 5 figure

    Spin-Glass-like Transition and Hall Resistivity of Y2-xBixIr2O7

    Full text link
    Various physical properties of the pyrochlore oxide Y2-xBixIr2O7 have been studied. The magnetizations M measured under the conditions of the zero-field-cooling(ZFC) and the field-cooling(FC) have different values below the temperature T=TG. The anomalous T-dependence of the electrical resistivities r and the thermoelectric powers S observed at around TG indicates that the behavior of the magnetization is due to the transition to the state with the spin freezing. In this spin-frozen state, the Hall resistivities rH measured with the ZFC and FC conditions are found to have different values, too, in the low temperature phase (T<TG). Possible mechanisms which induce such the hysteretic behavior are discussed.Comment: 9 pages, 7 figures, J. Phys. Soc. Jpn. 72 (2003) No.

    R32 As a Solution for Energy Conservation and Low Emission

    Get PDF

    Torsion-induced persistent current in a twisted quantum ring

    Get PDF
    We describe the effects of geometric torsion on the coherent motion of electrons along a thin twisted quantum ring. The geometric torsion inherent in the quantum ring triggers a quantum phase shift in the electrons' eigenstates, thereby resulting in a torsion-induced persistent current that flows along the twisted quantum ring. The physical conditions required for detecting the current flow are discussed.Comment: 9 pages, 3 figure

    High sensitive X-ray films to detect electron showers in 100 GeV region

    Get PDF
    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons
    corecore