566 research outputs found

    Vortex generation in the RSP game on the triangular lattice

    Full text link
    A new model of population dynamics on lattices is proposed. The model consists of players on lattice points, each of which plays the RSP game with neighboring players. Each player copies the next hand from the hand of the neighbouring player with the maximum point. The model exhibits a steady pattern with pairs of vortices and sinks on the triangular lattice. It is shown that the stationary vortex is due to the frustrations on the triangular lattice. A frustration is the three-sided situation where each of the three players around a triangle chooses the rock, the scissors and the paper, respectively

    Emergent spatial correlations in stochastically evolving populations

    Full text link
    We study the spatial pattern formation and emerging long range correlations in a model of three species coevolving in space and time according to stochastic contact rules. Analytical results for the pair correlation functions, based on a truncation approximation and supported by computer simulations, reveal emergent strategies of survival for minority agents based on selection of patterns. Minority agents exhibit defensive clustering and cooperative behavior close to phase transitions.Comment: 11 pages, 4 figures, Adobe PDF forma

    Collective behavior of coupled nonuniform stochastic oscillators

    Full text link
    Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [Phys. Rev. Lett. 96}, 145701 (2006)], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≀α≀10\leq \alpha \leq 1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≀αâ€Č<1\alpha \leq \alpha^\prime < 1. At α=1\alpha=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.Comment: 17 pages, 4 figure

    An infinite-period phase transition versus nucleation in a stochastic model of collective oscillations

    Full text link
    A lattice model of three-state stochastic phase-coupled oscillators has been shown by Wood et al (2006 Phys. Rev. Lett. 96 145701) to exhibit a phase transition at a critical value of the coupling parameter, leading to stable global oscillations. We show that, in the complete graph version of the model, upon further increase in the coupling, the average frequency of collective oscillations decreases until an infinite-period (IP) phase transition occurs, at which point collective oscillations cease. Above this second critical point, a macroscopic fraction of the oscillators spend most of the time in one of the three states, yielding a prototypical nonequilibrium example (without an equilibrium counterpart) in which discrete rotational (C_3) symmetry is spontaneously broken, in the absence of any absorbing state. Simulation results and nucleation arguments strongly suggest that the IP phase transition does not occur on finite-dimensional lattices with short-range interactions.Comment: 15 pages, 8 figure

    Application of the Limit Cycle Model to Star Formation Histories in Spiral Galaxies: Variation among Morphological Types

    Get PDF
    We propose a limit-cycle scenario of star formation history for any morphological type of spiral galaxies. It is known observationally that the early-type spiral sample has a wider range of the present star formation rate (SFR) than the late-type sample. This tendency is understood in the framework of the limit-cycle model of the interstellar medium (ISM), in which the SFR cyclically changes in accordance with the temporal variation of the mass fraction of the three ISM components. When the limit-cycle model of the ISM is applied, the amplitude of variation of the SFR is expected to change with the supernova (SN) rate. Observational evidence indicates that the early-type spiral galaxies show smaller rates of present SN than late-type ones. Combining this evidence with the limit-cycle model of the ISM, we predict that the early-type spiral galaxies show larger amplitudes in their SFR variation than the late-types. Indeed, this prediction is consistent with the observed wider range of the SFR in the early-type sample than in the late-type sample. Thus, in the framework of the limit-cycle model of the ISM, we are able to interpret the difference in the amplitude of SFR variation among the morphological classes of spiral galaxies.Comment: 12 pages LaTeX, to appear in A

    Pulverized coal combustion application of laser-based temperature sensing system using computed tomography : Tunable diode laser absorption spectroscopy (CT-TDLAS)

    Get PDF
    The investigation of combustion phenomena in pulverized coal flames is significant for combustion optimization related to energy conservation and emission reduction. Real-time two dimensional (2D) temperature and concentration distributions play an important role for combustion analysis. The non-contact and fast response 2D temperature and concentration distribution measurement method was developed in this study. The method is based on a combination of computed tomography (CT) and tunable diode laser absorption spectroscopy (TDLAS). The accuracy evaluation of developed 32-path CT-TDLAS demonstrated its feasibility of 2D temperature measurement. 32-path CT-TDLAS was applied to CH4 and 5 kg/h coal combustion fields for 2D temperature measurement. The time-series 2D temperature distribution in coal combustion furnace was measured using 32-path CT-TDLAS measurement cell with kHz time resolution. The transient temperature field of combustion flame directly reflects the combustion mode and combustion stability. The measurement results demonstrate its applicability of CT-TDLAS to various types of combustor, especially the combustion fields with coal and ash particles. CT-TDLAS method with kHz response time enables the real-time 2D temperature measurement to be applicable for combustion analysis

    Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanotechnology is developing rapidly throughout the world and the production of novel man-made nanoparticles is increasing, it is therefore of concern that nanomaterials have the potential to affect human health. The purpose of this study was to investigate the effects of maternal exposure to nano-sized anatase titanium dioxide (TiO<sub>2</sub>) on gene expression in the brain during the developmental period using cDNA microarray analysis combined with Gene Ontology (GO) and Medical Subject Headings (MeSH) terms information.</p> <p>Results</p> <p>Analysis of gene expression using GO terms indicated that expression levels of genes associated with apoptosis were altered in the brain of newborn pups, and those associated with brain development were altered in early age. The genes associated with response to oxidative stress were changed in the brains of 2 and 3 weeks old mice. Changes of the expression of genes associated with neurotransmitters and psychiatric diseases were found using MeSH terms.</p> <p>Conclusion</p> <p>Maternal exposure of mice to TiO<sub>2 </sub>nanoparticles may affect the expression of genes related to the development and function of the central nervous system.</p

    Multi-state epidemic processes on complex networks

    Full text link
    Infectious diseases are practically represented by models with multiple states and complex transition rules corresponding to, for example, birth, death, infection, recovery, disease progression, and quarantine. In addition, networks underlying infection events are often much more complex than described by meanfield equations or regular lattices. In models with simple transition rules such as the SIS and SIR models, heterogeneous contact rates are known to decrease epidemic thresholds. We analyze steady states of various multi-state disease propagation models with heterogeneous contact rates. In many models, heterogeneity simply decreases epidemic thresholds. However, in models with competing pathogens and mutation, coexistence of different pathogens for small infection rates requires network-independent conditions in addition to heterogeneity in contact rates. Furthermore, models without spontaneous neighbor-independent state transitions, such as cyclically competing species, do not show heterogeneity effects.Comment: 7 figures, 1 tabl

    Phase transition and selection in a four-species cyclic Lotka-Volterra model

    Full text link
    We study a four species ecological system with cyclic dominance whose individuals are distributed on a square lattice. Randomly chosen individuals migrate to one of the neighboring sites if it is empty or invade this site if occupied by their prey. The cyclic dominance maintains the coexistence of all the four species if the concentration of vacant sites is lower than a threshold value. Above the treshold, a symmetry breaking ordering occurs via growing domains containing only two neutral species inside. These two neutral species can protect each other from the external invaders (predators) and extend their common territory. According to our Monte Carlo simulations the observed phase transition is equivalent to those found in spreading models with two equivalent absorbing states although the present model has continuous sets of absorbing states with different portions of the two neutral species. The selection mechanism yielding symmetric phases is related to the domain growth process whith wide boundaries where the four species coexist.Comment: 4 pages, 5 figure
    • 

    corecore