22 research outputs found

    Financial hazard assessment for electricity suppliers due to power outages: the revenue loss perspective

    Get PDF
    The electrical power infrastructure of the modern world is advanced, efficient, and robust, yet power outages still occur. In addition to affecting millions of people around the world, these outage events cost billions of dollars to the global economy. In this paper, the revenue loss borne by electricity-supplying companies in the United States due to power outage events is estimated and predicted. Various factors responsible for power outages are considered in order to present an exploratory data analysis at the U.S. level, followed by the top ten affected states, which bear over 85% of the total revenue loss. The loss is computed using historic observational data of electricity usage patterns and the tariff offered by the energy suppliers. The study is supplemented with reliable and publicly available records, including electricity usage patterns, the consumer category distribution, climatological annotations, population density, socio-economic indicators and land area. Machine learning techniques are used to predict the revenue loss for future outage events, as well as to characterize the key parameters for efficient prediction and their partial dependence. The results show that the revenue loss is a function of several parameters, including residential sales, percentage of industrial customer, time-period of the year, and economic indicators. This study may help energy suppliers make risk-informed decisions, while developing revenue generation strategies as well as identifying safer investment avenues for long-term returns

    Efficient Multi-Objective Surrogate Optimization Of Computationally Expensive Models With Application To Watershed Model Calibration

    Full text link
    This thesis introduces efficient algorithms for multi-objective optimization of computationally expensive simulation optimization problems. Implementation of efficient algorithms and their advantage of use for calibration of complex and deterministic watershed simulation models is also analyzed. GOMORS, a novel parallel multi-objective optimization algorithm involving surrogate modeling via Radial Basis Function approximation, is introduced in Chapter 2. GOMORS is an iterative search algorithm where a multiobjective search utilizing evolution, local search, multi method search and non-dominated sorting is done on the surrogate function to select numerous points for simultaneous expensive evaluations in each algorithm iteration. A novel procedure, "multi-rule selection", is introduced that simultaneously selects evaluation points (which can be computed in parallel) within an algorithm iteration through different metrics. Results are compared against ParEGO and the widely used NSGA-II on numerous test problems including a hypothetical groundwater PDE problem. The results indicate that GOMORS outperforms ParEGO and NSGA-II within a budget of 400 function evaluations. The superiority of performance of GOMORS is more evident for problems involving a large number of decision variables (15-25 decision variables). The second contribution (Chapter 3) to the thesis is a comparative analysis of algorithms for multi-objective calibration of complex watershed models. Since complex watershed models can be computationally expensive, we analyze and compare performance of various algorithms within a limited evaluation budget of 1000 evaluations. The primary aim of the analysis is to assess effectiveness of algorithms in identifying "meaningful trade-offs" for multi-objective watershed model calibration problems within a limited evaluation budget. A new metric, referred as the Distributed Cardinality index, is introduced for quantifying the relative effectiveness of different algorithms in identifying "meaningful tradeoffs". Our results indicate that GOMORS (the algorithm introduced in Chapter 2), outperforms various other algorithms, including ParEGO and AMALGAM, in computing good and meaningful trade-off solutions, within a limited simulation evaluation budget. The third and final contribution (see Chapter 4) to the thesis is MOPLS, a Multi-Objective Parallel Local Stochastic Search algorithm for efficient optimization of computationally expensive problems. MOPLS is an iterative algorithm which incorporates simultaneous local candidate search on response surface models within a synchronous parallel framework to select numerous evaluation points in each iteration. MOPLS was applied to various test problems and multi-objective watershed calibration problems with 4, 8 and 16 synchronous parallel processes and results were compared against GOMORS, ParEGO and AMALGAM. The results indicate that within a limited evaluation budget, MOPLS outperforms ParEGO and AMALGAM for computationally expensive watershed calibration problems, when comparison is made in function evaluations. When parallel speedup is taken into consideration and comparison is made in wall clock time, the results indicate that overall performance of MOPLS is better than GOMORS, ParEGO and AMALGAM

    Efficient Multi-Objective Surrogate Optimization Of Computationally Expensive Models With Application To Watershed Model Calibration

    Full text link
    This thesis introduces efficient algorithms for multi-objective optimization of computationally expensive simulation optimization problems. Implementation of efficient algorithms and their advantage of use for calibration of complex and deterministic watershed simulation models is also analyzed. GOMORS, a novel parallel multi-objective optimization algorithm involving surrogate modeling via Radial Basis Function approximation, is introduced in Chapter 2. GOMORS is an iterative search algorithm where a multiobjective search utilizing evolution, local search, multi method search and non-dominated sorting is done on the surrogate function to select numerous points for simultaneous expensive evaluations in each algorithm iteration. A novel procedure, "multi-rule selection", is introduced that simultaneously selects evaluation points (which can be computed in parallel) within an algorithm iteration through different metrics. Results are compared against ParEGO and the widely used NSGA-II on numerous test problems including a hypothetical groundwater PDE problem. The results indicate that GOMORS outperforms ParEGO and NSGA-II within a budget of 400 function evaluations. The superiority of performance of GOMORS is more evident for problems involving a large number of decision variables (15-25 decision variables). The second contribution (Chapter 3) to the thesis is a comparative analysis of algorithms for multi-objective calibration of complex watershed models. Since complex watershed models can be computationally expensive, we analyze and compare performance of various algorithms within a limited evaluation budget of 1000 evaluations. The primary aim of the analysis is to assess effectiveness of algorithms in identifying "meaningful trade-offs" for multi-objective watershed model calibration problems within a limited evaluation budget. A new metric, referred as the Distributed Cardinality index, is introduced for quantifying the relative effectiveness of different algorithms in identifying "meaningful tradeoffs". Our results indicate that GOMORS (the algorithm introduced in Chapter 2), outperforms various other algorithms, including ParEGO and AMALGAM, in computing good and meaningful trade-off solutions, within a limited simulation evaluation budget. The third and final contribution (see Chapter 4) to the thesis is MOPLS, a Multi-Objective Parallel Local Stochastic Search algorithm for efficient optimization of computationally expensive problems. MOPLS is an iterative algorithm which incorporates simultaneous local candidate search on response surface models within a synchronous parallel framework to select numerous evaluation points in each iteration. MOPLS was applied to various test problems and multi-objective watershed calibration problems with 4, 8 and 16 synchronous parallel processes and results were compared against GOMORS, ParEGO and AMALGAM. The results indicate that within a limited evaluation budget, MOPLS outperforms ParEGO and AMALGAM for computationally expensive watershed calibration problems, when comparison is made in function evaluations. When parallel speedup is taken into consideration and comparison is made in wall clock time, the results indicate that overall performance of MOPLS is better than GOMORS, ParEGO and AMALGAM

    SOP: Parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems

    Get PDF
    This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors

    Past and future changes toward earlier timing of streamflow over Pakistan from bias-corrected regional climate projections (1962-2099)

    No full text
    Pakistan has experienced seasonal changes of streamflow, causing a lack of available water resources for agriculture. However, understanding of future seasonal changes of streamflow over Pakistan remains limited. This study assessed the past and future changes in streamflow timing along the four major rivers of Pakistan (Upper Indus, Kabul, Jhelum, and Chenab River basins), using observational data and bias-corrected hydrological projections. Firstly, the VIC-river routing model was simulated forced by simulated daily surface and base runoff data from six CORDEX-South Asia regional climate models (1962–2099). Secondly, the minimum and seasonality bias in simulated daily streamflow data were corrected based on observational records. To quantify seasonal changes of the hydrologic regime, half of annual cumulative streamflows (HCSs) and center-of-volume dates (CVDs) were computed from observed and bias-corrected simulated streamflow data. Over 1962–2019, observational records showed a significant decreasing trend in CVD (that is, an earlier onset of the wet season) by a range between −4.5 and −12.6 days across the three river basins, except for Chenab River basin. Bias-corrected hydrologic projections showed decreased CVD across the four study river basins by −4.2 to −6.3 days during the record period (1962–2019). The decreased CVDs ranges from −5 to −20 days in the near future (the 2050–2059 average) and −11 days to −37 days in the far future (the 2090–2099 average). This study reported diverse hydrologic responses to a similar magnitude of near-surface temperature in Pakistan, highlighting a need to develop basin-specific water resources mamangement and policies for climate change adaptation.11Ysciescopu

    Efficient Hyperparameter Optimization for Deep Learning Algorithms Using Deterministic RBF Surrogates

    No full text
    Automatically searching for optimal hyperparameter configurations is of crucial importance for applying deep learning algorithms in practice. Recently, Bayesian optimization has been proposed for optimizing hyperparameters of various machine learning algorithms. Those methods adopt probabilistic surrogate models like Gaussian processes to approximate and minimize the validation error function of hyperparameter values. However, probabilistic surrogates require accurate estimates of sufficient statistics (e.g., covariance) of the error distribution and thus need many function evaluations with a sizeable number of hyperparameters. This makes them inefficient for optimizing hyperparameters of deep learning algorithms, which are highly expensive to evaluate. In this work, we propose a new deterministic and efficient hyperparameter optimization method that employs radial basis functions as error surrogates. The proposed mixed integer algorithm, called HORD, searches the surrogate for the most promising hyperparameter values through dynamic coordinate search and requires many fewer function evaluations. HORD does well in low dimensions but it is exceptionally better in higher dimensions. Extensive evaluations on MNIST and CIFAR-10 for four deep neural networks demonstrate HORD significantly outperforms the well-established Bayesian optimization methods such as GP, SMAC, and TPE. For instance, on average, HORD is more than 6 times faster than GP-EI in obtaining the best configuration of 19 hyperparameters

    Asia Pacific Weather Statistics (APWS) Dataset

    No full text
    The Asia Pacific Weather Statistics (APWS) dataset, is developed and provided for use with SWAT hydrologic models and / or the WXGN weather generator, for generating synthetic weather time-series for any location in the Asia Pacific region. The APWS data set is available at a 0.25 degree spatial resolution

    Power Outage Estimation: The Study of Revenue-led Top Affected States of U.S.

    No full text
    The electric power systems are becoming smart as well as complex with every passing year, especially in response to the changing environmental conditions. Resilience of power generation and transmission infrastructure is important to avoid power outages, ensure robust service, and to achieve sustained economic benefits. In this study, we employ a two-stage model to estimate the power outage in terms of its intensity as well as the duration. We identify the top three potentially critical states of United States of America, not merely based on duration of the power outage, but by also incorporating outage related revenue loss. In the proposed model, the first stage classifies the intensity of the outage event while the second stage predicts the duration of the outage itself. Moreover, the key predictors are characterized and their association with outage duration is illustrated. We use a comprehensive and publicly available dataset, which provides the information related to historical power outage events, such as electricity usage patterns, climatological annotations, socio-economic indicators, and land-use data. Our rigorous analysis and results suggest that the power outage interval is the function of several parameters, such as climatological condition, economic indicators as well as the time of the year. The proposed study can help the regulatory authorities taking appropriate decisions for long term economic paybacks. It can also help disaster management authorities to take risk-informed resilient decisions for system safety
    corecore