349 research outputs found

    Eddy Current Response to Three-Dimensional Flaws by the Boundary Element Method

    Get PDF
    In planning an inspection procedure, or in designing parts with flaw detectability as a design goal, it is essential that the engineer have available some form of model for estimating the probability of flaw detection. In the past this need has been met, with varying degrees of success, by relying on experience in the inspection of similar parts, sometimes supplemented by experimental testing. With the rapid advances in computer technology in recent years, it is now feasible to consider replacing, or at least enhancing, such practices with predictions based on numerical simulation of the flaw detection process [1]

    Detection of monoclonal immunoglobulin heavy chain gene rearrangement (FR3) in Thai malignant lymphoma by High Resolution Melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction followed by heteroduplex has currently become standard whereas fluorescent fragment analysis (GeneScan) has been used for confirmation test. In this study, three techniques had been compared: thermocycler polymerase chain reaction (PCR) followed by heteroduplex and polyacrylamide gel electrophoresis, GeneScan analysis, and real time PCR with High Resolution Melting curve analysis (HRM). The comparison was carried out with DNA extracted from paraffin embedded tissues diagnosed as B- cell non-Hodgkin lymphoma. Specific PCR primers sequences for IgH gene variable region 3, including fluorescence labeled IgH primers were used and results were compared with HRM. In conclusion, the detection IgH gene rearrangement by HRM in the LightCycler System showed potential for distinguishing monoclonality from polyclonality in B-cell non-Hodgkin lymphoma.</p> <p>Introduction</p> <p>Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The incidence rate as reported by Ministry of Public Health is 3.1 per 100,000 population in female whereas the rate in male is 4.5 per 100,000 population <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. At Siriraj Hospital, the new cases diagnosed as malignant lymphoma were 214.6 cases/year <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Therefore, detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction (PCR) assay has recently become a standard laboratory test for discrimination of reactive from malignant clonal lymphoproliferation <abbrgrp><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>. Analyzing DNA extracted from formalin-fixed, paraffin-embedded tissues by multiplex PCR techniques is more rapid, accurate and highly sensitive. Measuring the size of the amplicon from PCR analysis could be used to diagnose malignant lymphoma with monoclonal pattern showing specific and distinct bands detected on acrylamide gel electrophoresis. However, this technique has some limitations and some patients might require a further confirmation test such as GeneScan or fragment analysis <abbrgrp><abbr bid="B5">5</abbr><abbr bid="B6">6</abbr></abbrgrp>.</p> <p>GeneScan technique or fragment analysis reflects size and peak of DNA by using capillary gel electrophoresis. This technique is highly sensitive and can detect 0.5-1% of clonal lymphoid cells. It measures the amplicons by using various fluorescently labeled primers at forward or reverse sides and a specific size standard. Using a Genetic Analyzer machine and GeneMapper software (Applied Bioscience, USA), the monoclonal pattern revealed one single, sharp and high peak at the specific size corresponding to acrylamide gel pattern, whereas the polyclonal pattern showed multiple and small peak condensed at the same size standard. This technique is the most sensitive and accurate technique; however, it usually requires high technical experience and is also of high cost <abbrgrp><abbr bid="B7">7</abbr></abbrgrp>. Therefore, rapid and more cost effective technique are being sought.</p> <p>LightCycler PCR performs the diagnostic detection of amplicon via melting curve analysis within 2 hours with the use of a specific dye <abbrgrp><abbr bid="B8">8</abbr><abbr bid="B9">9</abbr></abbrgrp>. This dye consists of two types: one known as SYBR-Green I which is non specific and the other named as High Resolution Melting analysis (HRM) which is highly sensitive, more accurate and stable. Several reports demonstrated that this new instrument combined with DNA intercalating dyes can be used to discriminate sequence changes in PCR amplicon without manual handling of PCR product <abbrgrp><abbr bid="B10">10</abbr><abbr bid="B11">11</abbr></abbrgrp>. Therefore, current investigations using melting curve analysis are being developed <abbrgrp><abbr bid="B12">12</abbr><abbr bid="B13">13</abbr></abbrgrp>.</p> <p>In this study, three different techniques were compared to evaluate the suitability of LightCycler PCR with HRM as the clonal diagnostic tool for IgH gene rearrangement in B-cell non-Hogdkin lymphoma, i.e. thermocycler PCR followed by heteroduplex analysis and PAGE, GeneScan analysis and LightCycler PCR with HRM.</p

    Higher harmonic generation of guided waves at delaminations in laminated composite beams

    Get PDF
    Detection and characterization of delamination damage are of great importance to the assurance of structural safety. This work investigates the potential of a baseline-free structural health monitoring technique based on higher harmonics resulting from the nonlinear interaction of guided wave and a delamination. The nonlinearity considered in this study arises from the clapping of the sub-laminates in the delaminated region, which generates contact acoustic nonlinearity. Both explicit finite element simulations and experimental tests are conducted on composite laminates containing a delamination of different sizes and at different through-thickness locations. The results show that the interaction between the fundamental asymmetric mode (A0) of guided wave and a delamination generates contact acoustic nonlinearity in the form of higher harmonics, which provides a good measure for identifying the existence of delaminations and determining their sizes in laminated composite beams. This new insight into the generation mechanisms of nonlinear higher order harmonics in composite laminates will enhance the detection and monitoring of damage in composite structures.Reza Soleimanpour, Ching-Tai Ng and Chun H.Wan

    Assessment of the dynamics of atrial signals and local atrial period series during atrial fibrillation: effects of isoproterenol administration

    Get PDF
    BACKGROUND: The autonomic nervous system (ANS) plays an important role in the genesis and maintenance of atrial fibrillation (AF), but quantification of its electrophysiologic effects is extremely complex and difficult. Aim of the study was to evaluate the capability of linear and non-linear indexes to capture the fine changing dynamics of atrial signals and local atrial period (LAP) series during adrenergic activation induced by isoproterenol (a sympathomimetic drug) infusion. METHODS: Nine patients with paroxysmal or persistent AF (aged 60 ± 6) underwent electrophysiological study in which isoproterenol was administered to patients. Atrial electrograms were acquired during i) sinus rhythm (SR); ii) sinus rhythm during isoproterenol (SRISO) administration; iii) atrial fibrillation (AF) and iv) atrial fibrillation during isoproterenol (AFISO) administration. The level of organization between two electrograms was assessed by the synchronization index (S), whereas the degree of recurrence of a pattern in a signal was defined by the regularity index (R). In addition, the level of predictability (LP) and regularity of LAP series were computed. RESULTS: LAP series analysis shows a reduction of both LP and R index during isoproterenol infusion in SR and AF (R(SR )= 0.75 ± 0.07 R(SRISO )= 0.69 ± 0.10, p < 0.0001; R(AF )= 0.31 ± 0.08 R(AFISO )= 0.26 ± 0.09, p < 0.0001; LP(SR )= 99.99 ± 0.001 LP(SRISO )= 99.97 ± 0.03, p < 0.0001; LP(AF )= 69.46 ± 21.55 LP(AFISO )= 55 ± 24.75; p < 0.0001). Electrograms analysis shows R index reductions both in SR (R(SR )= 0.49 ± 0.08 R(SRISO )= 0.46 ± 0.09 p < 0.0001) and in AF (R(AF )= 0.29 ± 0.09 R(AFISO )= 0.28 ± 0.08 n.s.). CONCLUSIONS: The proposed parameters succeeded in discriminating the subtle changes due to isoproterenol infusion during both the rhythms especially when considering LAP series analysis. The reduced value of analyzed parameters after isoproterenol administration could reflect an important pro-arrhythmic influence of adrenergic activation on favoring maintenance of AF

    Matrix Metalloproteinase-8 Mediates the Unfavorable Systemic Impact of Local Irradiation on Pharmacokinetics of Anti-Cancer Drug 5-Fluorouracil

    Get PDF
    Concurrent chemoradiation with 5-fluorouracil (5-FU) is widely accepted for cancer treatment. However, the interactions between radiation and 5-FU remain unclear. Here, we evaluated the influence of local irradiation on the pharmacokinetics of 5-FU in rats. The single-fraction radiation was delivered to the whole pelvic fields of Sprague-Dawley rats after computerized tomography-based planning. 5-FU at 100 mg/kg was prescribed 24 hours after radiation. A high-performance liquid chromatography system was used to measure 5-FU in the blood. Matrix metalloproteinase-8 (MMP-8) inhibitor I was administered to examine whether or not RT modulation of 5-FU pharmacokinetic parameters could be blocked. Compared with sham-irradiated controls, whole pelvic irradiation reduced the area under the concentration versus time curve (AUC) of 5-FU in plasma and, in contrast, increased in bile with a radiation dose-dependent manner. Based on protein array analysis, the amount of plasma MMP-8 was increased by whole pelvic irradiation (2.8-fold by 0.5 Gy and 5.3-fold by 2 Gy) in comparison with controls. Pretreatment with MMP-8 inhibitor reversed the effect of irradiation on AUC of 5-FU in plasma. Our findings first indicate that local irradiation modulate the systemic pharmacokinetics of 5-FU through stimulating the release of MMP-8. The pharmacokinetics of 5-FU during concurrent chemoradiaiton therapy should be rechecked and the optimal 5-FU dose should be reevaluated, and adjusted if necessary, during CCRT

    Effectiveness of a mobile smoking cessation service in reaching elderly smokers and predictors of quitting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different smoking cessation programmes have been developed in the last decade but utilization by the elderly is low. We evaluated a pilot mobile smoking cessation service for the Chinese elderly in Hong Kong and identified predictors of quitting.</p> <p>Methods</p> <p>The Mobile Smoking Cessation Programme (MSCP) targeted elderly smokers (aged 60 or above) and provided service in a place that was convenient to the elderly. Trained counsellors provided individual counselling and 4 week's free supply of nicotine replacement therapy (NRT). Follow up was arranged at 1 month by face-to-face and at 3 and 6 months by telephone plus urinary cotinine validation. A structured record sheet was used for data collection. The service was evaluated in terms of process, outcome and cost.</p> <p>Results</p> <p>102 governmental and non-governmental social service units and private residential homes for the elderly participated in the MSCP. We held 90 health talks with 3266 elderly (1140 smokers and 2126 non-smokers) attended. Of the 1140 smokers, 365 (32%) received intensive smoking cessation service. By intention-to-treat, the validated 7 day point prevalence quit rate was 20.3% (95% confidence interval: 16.2%–24.8%). Smoking less than 11 cigarettes per day and being adherent to NRT for 4 weeks or more were significant predictors of quitting. The average cost per contact was US54(smokersonly);persmokerwithcounselling:US54 (smokers only); per smoker with counselling: US168; per self-reported quitter: US594;andpercotininevalidatedquitter:US594; and per cotinine validated quitter: US827.</p> <p>Conclusion</p> <p>This mobile smoking cessation programme was acceptable to elderly Chinese smokers, with quit rate comparable to other comprehensive programmes in the West. A mobile clinic is a promising model to reach the elderly and probably other hard to reach smokers.</p

    From bit to it: How a complex metabolic network transforms information into living matter

    Get PDF
    Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide. I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells. The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective

    The Transcriptional Response in Human Umbilical Vein Endothelial Cells Exposed to Insulin: A Dynamic Gene Expression Approach

    Get PDF
    BACKGROUND: In diabetes chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation through the activation of the MAP kinases, which in turn regulate cellular proliferation. However, it is not known whether insulin itself could increase the transcription of specific genes for cellular proliferation in the endothelium. Hence, the characterization of transcriptional modifications in endothelium is an important step for a better understanding of the mechanism of insulin action and the relationship between endothelial cell dysfunction and insulin resistance. METHODOLOGY AND PRINCIPAL FINDINGS: The transcriptional response of endothelial cells in the 440 minutes following insulin stimulation was monitored using microarrays and compared to a control condition. About 1700 genes were selected as differentially expressed based on their treated minus control profile, thus allowing the detection of even small but systematic changes in gene expression. Genes were clustered in 7 groups according to their time expression profile and classified into 15 functional categories that can support the biological effects of insulin, based on Gene Ontology enrichment analysis. In terms of endothelial function, the most prominent processes affected were NADH dehydrogenase activity, N-terminal myristoylation domain binding, nitric-oxide synthase regulator activity and growth factor binding. Pathway-based enrichment analysis revealed "Electron Transport Chain" significantly enriched. Results were validated on genes belonging to "Electron Transport Chain" pathway, using quantitative RT-PCR. CONCLUSIONS: As far as we know, this is the first systematic study in the literature monitoring transcriptional response to insulin in endothelial cells, in a time series microarray experiment. Since chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation, some of the genes identified in the present work are potential novel candidates in diabetes complications related to endothelial dysfunction

    Time to Recurrence and Survival in Serous Ovarian Tumors Predicted from Integrated Genomic Profiles

    Get PDF
    Serous ovarian cancer (SeOvCa) is an aggressive disease with differential and often inadequate therapeutic outcome after standard treatment. The Cancer Genome Atlas (TCGA) has provided rich molecular and genetic profiles from hundreds of primary surgical samples. These profiles confirm mutations of TP53 in ∼100% of patients and an extraordinarily complex profile of DNA copy number changes with considerable patient-to-patient diversity. This raises the joint challenge of exploiting all new available datasets and reducing their confounding complexity for the purpose of predicting clinical outcomes and identifying disease relevant pathway alterations. We therefore set out to use multi-data type genomic profiles (mRNA, DNA methylation, DNA copy-number alteration and microRNA) available from TCGA to identify prognostic signatures for the prediction of progression-free survival (PFS) and overall survival (OS). prediction algorithm and applied it to two datasets integrated from the four genomic data types. We (1) selected features through cross-validation; (2) generated a prognostic index for patient risk stratification; and (3) directly predicted continuous clinical outcome measures, that is, the time to recurrence and survival time. We used Kaplan-Meier p-values, hazard ratios (HR), and concordance probability estimates (CPE) to assess prediction performance, comparing separate and integrated datasets. Data integration resulted in the best PFS signature (withheld data: p-value = 0.008; HR = 2.83; CPE = 0.72).We provide a prediction tool that inputs genomic profiles of primary surgical samples and generates patient-specific predictions for the time to recurrence and survival, along with outcome risk predictions. Using integrated genomic profiles resulted in information gain for prediction of outcomes. Pathway analysis provided potential insights into functional changes affecting disease progression. The prognostic signatures, if prospectively validated, may be useful for interpreting therapeutic outcomes for clinical trials that aim to improve the therapy for SeOvCa patients
    • …
    corecore