39 research outputs found

    ROX Index to Guide Management of COVID-19 Pneumonia

    Get PDF
    Coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from China in December 2019 leading to a global pandemic (1). Approximately 17% of patients admitted to hospital require critical care, the majority of whom undergo mechanical ventilation (MV) for pneumonia complicated by hypoxaemia (2)

    Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis

    Get PDF
    Two cases of primary plastid endosymbiosis are known. The first occurred ca. 1.6 billion years ago and putatively gave rise to the canonical plastid in algae and plants. The second is restricted to a genus of rhizarian amoebae that includes Paulinella chromatophora. Photosynthetic Paulinella species gained their plastid from an α-cyanobacterial source and are sister to plastid-lacking phagotrophs such as Paulinella ovalis that ingest cyanobacteria. To study the role of feeding behavior in plastid origin, we analyzed single-cell genome assemblies from six P. ovalis-like cells isolated from Chesapeake Bay, USA. Dozens of contigs in these cell assemblies were derived from prey DNA of α-cyanobacterial origin and associated cyanophages. We found two examples of horizontal gene transfer (HGT) in P. ovalis-like nuclear DNA from cyanobacterial sources. This work suggests the first evidence of a link between feeding behavior in wild-caught cells, HGT, and plastid primary endosymbiosis in the monophyletic Paulinella lineage

    Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginsenoside Rg3, a saponin extracted from ginseng, inhibits angiogenesis. The combination of low-dose chemotherapy and anti-angiogenic inhibitors suppresses growth of experimental tumors more effectively than conventional therapy or anti-angiogenic agent alone. The present study was designed to evaluate the efficacy of low-dose gemcitabine combined with ginsenoside Rg3 on angiogenesis and growth of established Lewis lung carcinoma in mice.</p> <p>Methods</p> <p>C57L/6 mice implanted with Lewis lung carcinoma were randomized into the control, ginsenoside Rg3, gemcitabine and combination group. The quality of life and survival of mice were recorded. Tumor volume, inhibitive rate and necrosis rate were estimated. Necrosis of tumor and signals of blood flow as well as dynamic parameters of arterial blood flow in tumors such as peak systolic velocity (PSV) and resistive index (RI) were detected by color Doppler ultrasound. In addition, expression of vascular endothelial cell growth factor (VEGF) and CD31 were observed by immunohistochemstry, and microvessel density (MVD) of the tumor tissues was assessed by CD31 immunohistochemical analysis.</p> <p>Results</p> <p>Quality of life of mice in the ginsenoside Rg3 and combination group were better than in the control and gemcitabine group. Combined therapy with ginsenoside Rg3 and gemcitabine not only enhanced efficacy on suppression of tumor growth and prolongation of the survival, but also increased necrosis rate of tumor significantly. In addition, the combination treatment could obviously decrease VEGF expression and MVD as well as signals of blood flow and PSV in tumors.</p> <p>Conclusion</p> <p>Ginsenoside Rg3 combined with gemcitabine may significantly inhibit angiogenesis and growth of lung cancer and improve survival and quality of life of tumor-bearing mice. The combination of chemotherapy and anti-angiogenic drugs may be an innovative and promising therapeutic strategy in the experimental treatment of human lung cancer.</p

    Linkage Mapping of Stem Saccharification Digestibility in Rice

    Get PDF
    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties

    Selective gene silencing by viral delivery of short hairpin RNA

    Get PDF
    RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells

    Effect of a Real-Time Risk Score on 30-day Readmission Reduction in Singapore

    No full text
    10.1055/s-0041-1726422Applied Clinical Informatics122372-38
    corecore