13,468 research outputs found

    Fracture strain of LPCVD polysilicon

    Get PDF
    A polysilicon bridge-slider structure in which one end of the bridge is fixed and the other is connected to a plate sliding in two flanged guideways, is designed and fabricated to study the strain at fracture of LPCVD polysilicon. In the experiments, a mechanical probe is used to push against the plate end, compressing and forcing the bridge to buckle until it breaks. The distance that the plate needs to be pushed to break the bridge is recorded. Nonlinear beam theory is then used to interpret the results of these axially-loaded-bridge experiments. The measured average fracture strain of as-deposited LPCVD polysilicon is 1.72%. High-temperature annealing of the bridge-sliders at 1000°C for 1 h decreases the average fracture strain to 0.93%

    Implantable RF-coiled chip packaging

    Get PDF
    In this paper, we present an embedded chip integration technology that utilizes silicon housings and flexible parylene radio frequency (RF) coils. As a demonstration of this technology, a flexible parylene RF coil has been integrated with an RF identification (RFID) chip. The coil has an inductance of 16 μH, with two layers of metal completely encapsulated in parylene-C. The functionality of the embedded chip is verified using an RFID reader module. Accelerated-lifetime soak testing has been performed in saline, and the results show that the silicon chip is well protected and the lifetime of our parylene-encapsulated RF coil at 37 °C is more than 20 years

    Impact-picture predictions for the γγ\gamma\gamma total cross section at LEP

    Full text link
    We show that the rising total cross section σ(γγhadrons)\sigma(\gamma\gamma \to hadrons) recently observed by the L3 and OPAL Collaborations at LEP are fully consistent with the impact-picture for high-energy scattering. The impact picture is then used to predict this total cross section at higher energies. These experimental results confirm once more the success of the theoretical approach, which predicted for the first time, nearly thirty years ago, the universal increase of total cross sections at high energies.Comment: 5 pages, Latex, 1 figure. Revised versio

    A study of longitudinal oscillations of propellant tanks and wave propagations in feed lines. Part I - One-dimensional wave propagation in a feed line

    Get PDF
    Longitudinal oscillations of propellant tanks and wave propagations in feed lines with streaming flui

    A study of longitudinal oscillations of propellant tanks and wave propagations in feed lines. Part V - Longitudinal oscillation of a propellant-filled flexible oblate spheroidal tank

    Get PDF
    Analytical method for determining axisymmetric longitudinal mode shapes and frequencies of incompressible and inviscid fluid in pressurized flexible oblate spheroidal propellant tan

    Micro heat exchanger by using MEMS impinging jets

    Get PDF
    A micro impinging-jet heat exchanger is presented here. Heat transfer is studied for single jet, slot arrays and jet arrays. In order to facilitate micro heat transfer measurements with these devices, a MEMS sensor chip, which has an 8 x 8 temperature-sensor array on one side, and an integrated heater on the other side has been designed and fabricated. This sensor chip allows 2-D surface temperature measurement with various jets impinging on it. It is found that micro impinging jets can be highly efficient when compared to existing macro impinging-jet microelectronics packages such as IBM 4381. For example, using a single nozzle jet (500-μm diameter driven by 5 psig pressure), the sensor chip (2 x 2 cm^2) temperature can be cooled down from 70 to 33°C. The cooling becomes more efficient when nozzle arrays (4x5 over 1 cm^2 area) are used under the same driving pressure. Interestingly, although higher driving pressure gives better cooling (lower surface temperature), the cooling efficiency, defined as h/0.5pv^2, is actually higher for lower driving pressure
    corecore