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A procedure has been formulated to determine the 
natural frequencies of an elastic liquid-filled hemis - 
pherical shell subjected to axisymmetric vibrations. 
It is assumed that the fluid is inviscid and incompres- 
sible, and its motion is assumed irrotational. Under 
these assumptions, a velocity potential is obtained 
from the solution of Laplace's equation in spherical 
coordinates. This velocity potential, together with . 
Bernoulli's equation, permits the evaluation of the 
fluctuating fluid pressure a t  the interface. Treating 
the interface pressure as  a forcing function in the 
shell equations, the shell displacement components 
a re  then determined analytically. The free surface 
boundary condition and the interface condition for the 
radial velocities can only be satisfied approximately. 
An eigenvalue problem i s  formulated by minimizing 
the integrated squared e r ro r  for the interface condi- 
tion subject to the constraints that the integrated 
e r r o r  for the f ree  surface condition also be a 
minimum, and the prescribed radial deflection along 
the edge of the shell be satisfied. 
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INTRODUCTION 

Analysis of the axisymmetric vibrations of a liquid-filled oblate 
spheroidal shell is known to be a difficult problem. 
difficulty is indicated by the absence of any published paper on this problem, 
despite the fact that fuel-sloshing problems alone have attracted considerable 
attention during the past. 

The magnitude of the 

No doubt, the difficulty stems from the horrendous and lengthy mathe- 
matical expressions required in  the treatment of the oblate spheroidal shell 
and its associated boundary conditions. Due to the complexity involved, the 
present state of the art for analyzing such an interaction problem would 
dictate the use of an energy approach. If this method were to be pursued, 
the investigator would soon be lost in a maze of algebra. 
obstacles that would be encountered in attacking the oblate spheroidal shell- 
liquid interaction problem without some definite approach other than the 
energy method, the most logical f i rs t  step would be to ana1yze.a liquid- 
filled, hemispherical shell. This particular configuration not only contains 
the same features as the liquid-filled, oblate spheroidal shell, but i ts  
principal attraction is in its simpler geometry. 
study was undertaken in order to develop an analytical approach and numer- 
ical procedure that, with suitable modification, wil l  be used for solving the 
problem of the axisy-mmetric oscillation of a propellant in a flexible, oblate 
spheroidal tank. In addition, the solution for the spherical case will serve 
a s  a check for the oblate spheroidal solution when it degenerates into a 
hemisphere in the limit. 

To avoid the 

For  this reason, the present 

- 1 -  
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W 

SECTION 1. MATHEMATICAL MODEL 

In this report, a thin elastic hemispherical shell of uniform thickness 
and completely filled with a liquid propellant that is assumed to be inviscid 
and incompressible under irrotational motion is considered. 
shell is treated as  a membrane, bending effects a r e  ignored. 
hemispherical shell whose thickness-to-radius ratio is very small, such as 
in the present case,  this assumption is  justified. 
to small-amplitude, longitudinal, o r  axisyrnmetric, motion only. 

Because the 
For a thin 

Also attention was confined 

The shell coordinate system used in this report i s  shown in Figure 1. 

Figure 1. Hemispherical Shell Coordinate System 

- 3  - 
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SECTION 2. METHOD O F  SOLUTION 

The behavior of the vibrating hemisphere of fluid was  first determined 
f rom the velocity potential that satisfied Laplace's equation This permitted 
the evaluation of the dynamic fluid pressure at the interface, which was then 
taken as the external forcing function acting on the hemispherical shell. The 
solution of the shell equations then gave both meridional and radial displace- 
ment components in te rms  of the velocity potential. 

An eigenvalue problem is formulated from the boundary condition of 
the liquid a t  the f r e e  surface, the compatibility of radial velocities of the 
shell and fluid at the interface, and the boundary condition imposed on the 
radial displacement a t  the edge of the shell. 
equations can be satisfied exactly, the integrated squared e r r o r  method is 
employed. 
requiring the integrated squared e r r o r  of the interface condition to be a 
minimum subject to the constraints that (1) the integrated e r r o r  for 
the free surface condition also be a minimum and (2) the boundary condition 
fo r  the radial displacement at the edge be satisfied within the limitation of 
using only a finite series expansion in Legendre polynomials fo r  the fluid 
pre  s sure. 

Since none of these three 

Finally, the eigenvalue problem is reduced to matrix form by 

- 5 -  
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SECTION 3. LAPLACE'S EQUATION 

In addition to assuming that the fluid is inviscid and incompressible, 
it is a l so  assumed that the motion of the fluid i s  irrotational. This latter 
assumption implies the existence of a velocity potential that satisfies Laplace's 
equation. Under the above assumptions, the problem of small-amplitude 
axisymmetric vibrations of a hemisphere of fiuid i s  reduced to the solution 
of Laplace's equation, subject to appropriate boundary conditions. 

In spherical coordinates, for the case of axial symmetry, Laplace's 
equation takes the form 

where @ i s  the velocity potential, and r, 8 a r e  coordinates that denote the 
distance measured from the origin and the "cone angle'' measured from the 
ve r tic a1 axis, r e  spec tively . 
BOUNDARY CONDITIONS 

The solution of the problem requires specification of the boundary 
conditions a t  the f ree  surface of the liquid and at  the interface. 
ditions require the application of Bernoulli's equation, which i s  derived 
from the integration of Euler 's  equation of motion. 

These con- 

It i s  assumed that the pressure a t  the f ree  sur face is  a constant. This i s  
justified, provided that we consider motion of only infinitely small  amplitudes, 
Under this assumption, the velocityvector a t  the surface is small, and so 
the velocity squared te rm in Bernoulli's equation is a small  t e rm of higher 
order and, hence, may be neglected. 
restriction is that the normal to the f r e e  surface will  make only a very small  
angle with the vertical. 
fluid velocity at the f ree  surface is essentially equal to the normal velocity 
of the surface itself. 
condition can be expressed a s  

Another implication of this same 

It then follows that the normal component of the 

In t e rms  of the linearized Bernoulli's equation, this 

- 7 -  
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This is the linearized boundary condition that is  to be satisfied at the f ree  
surface, which represents one of the conditions required i n  the formulation 
of the eigenvalue problem. 

INT ERFA C E CONDITION 

The interface condition is  the one that couples the vibrating system 
Due represented by the hemisphere of fluid and the hemispherical shell. 

to our original assumption that the fluid i s  inviscid, this condition is con- 
cerned with the normal velocity of the fluid and of the shell  only. 
compatibility, both of these velocities must  be equal. 

F o r  
Thus, 

* I  = aw a t r = a  

fluid shell 

(3 )  

This is the second condition required in formulating the eigenvalue 
problem. 

SOLUTION OF LAPLACE'S EQUATION 

In the case of simple harmonic motion, the velocity potential may be 
taken in the f o r m  

@ = C$J (r ,  e )  cos a t  (4)  

where C$J (r ,  0 )  is the velocity potential for steady flow, w is the natural  
frequency of the system, and t is the time. 
to the meridional and radial  velocity components of the fluid, respectively, 
by the relations 

The velocity potential is related 

a w  - a @  
a t  a r  - - -  

On substituting Equation (4) into Equation ( l ) ,  a differential equation 
that is  identical in f o r m  to Equation (1) is obtained for C$J ( r ,  0 ) .  
tial equation for  4 can be solved by employing the standard technique of 
separation of variables. 

This differen- 

Therefore, we can assume that 

Upon substituting into Laplace's equation, two ordinary differential equations 
fo r  determining R ( r )  and O( 0 )  a r e  obtained. They a r e  

- 8 -  
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dR 
- 2  dr 

2 
+ 2 r  - - n(nt1)R = 0 

2 d R  
r -  

d r  

2 

d e  

d@ 
@ + cot e -t n ln+ l )n  = o 
2 d e  

where n is a non-negative integer. 

Equation ( 7 )  has as  its solution 

n - ( n t l )  R ( r )  = A r  t Br ( 9 )  

where A and B a re  arbi t rary constants. 
r = 0 s o  that the velocity potential w i l l  remain finite, the constant B i s  
assumed zero. 

In o r d e r  to avoid tAie s i n g u h r i t y  zt 

Equation (8) may be transformed into Legendre's equation by intro- 
ducing a new variable, p, defined by 

The resul t  is 

which has the solution 

where e and 6 a r e  arbi t rary constants, and P,( t.) and an( p) a r e  Legendre 
polynomials of the first and second kind, respectively, of degree n. In a 
similar fashion, wi th  regard to the constant B in Equation ( 9 ) ,  the constant 

is assumed zero because Qn(k) has logarithmic singularities a t  p = 1 
corresponding to 8 = 0 3  

With both R ( r )  and @ ( e )  determined, the steady-state velocity potential 
can be derived immediately from Equation (6). 

by the sum of all such solutions plus an additional arbi t rary constant. 
convenience, the radius r is  non-dimensionalized by dividing i t  by the radius 
l l a l l  of the hemisphere. 
finally takes the form 

Since each te rm of degree n 
is ;?, s ~ l i ~ t i o ~ ,  the t¶--*-- m n n o * 3 1  -- e x p r e s s i ~ r :  f ~ r  x v - ~ ? = ~ i t ) T  potentia! is given 

For  

In addition, the constants a r e  redefined so that + 

- 9 -  
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J 
where Co, C1, . . . , Cn a r e  nondimensional a rb i t ra ry  constants. Thus, sub- 
stituting this expression back into Equation (4), the velocity potential is 

n =  1 L 
cos u t  

FREE SURFACE BOUNDARY CONDITION 

On substituting Equation ( 14) into Equation (2), the following relation 
for the free  surface boundary condition i s  obtained: 

2 “ O C  
aw g c,  t x  -$(%)n-l [ 

n = l  

= o  
TT 

p =  cos - = o  2 

It  is  seen that this linearized boundary condition cannot be satisfied 

Hence, the relation will be averaged over the entire se r ies  by inte- 
for each nth - degree term of the legendre functions for Cn’s different from 
zero. 
grating i t  over the f ree  surface of the liquid. 
that will be used later in formulating the eigenvalue problem to determine the 
natural frequencies of the system. 

It  is  this resulting expression 

PRESSURE A T  INTERFACE 

The dynamic fluid pressure  can be obtained from the velocity potential 
through the linearized Bernoulli equation. This relation is  given by 

a@ P = -Po - 
a t  

where p 0  i s  the fluid density. 
(14), we have 

Inserting the expression for  f rom Equation 

- 10 - 
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r 1 

n =  1 L 

A t  the interface where r = a, the pressure is 
~ 

r 7 
n I a J c  2 2  I 

p ( a ,8 j  = a w 
p0 I c0 t C pn(p) I sin u t  

L n =  1 1 
which represents the fluctuating pressure a t  the interface between the fluid 
and the hemispherical shell. 

- 1 1  - 

~~ 
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SECTION 4. EQUATIONS OF MOTION FOR HEMISPHERICAL SHELL 

The equations of equilibrium for a shell of revolution under a sym- 

On specializing these equations to the case of a spherical o r  
metrical  loading a r e  given in Timoshenko and Woinowsky-Krieger (Refer- 
ence 5). 
hemispherical shell under inertial loading and fluid pres  sure,  they take 
the form 

2 a Ne a v  -+ (Ne - N ) cot 8 = Pha- 
2 

a t  a e  Q, 

2 
+ ap (a, e)  N t N = Pha- a w  

2 
a t  e 0  

where N e  and Ngj a r e  the s t r e s s  resultants in the direction of the meridional 
and circumferential coordinates, respectively; P is the density of the shell 
material;  and h is the shell thickness. 
taken positively in the direction of increasing 8 ,  where 0 i s  measured from 
the axis of symmetry, and the radial displacement w i s  positive in the direc- 
tion of the inward normal. Since the expression for the pressure  p(a,9) 
given by Equation (18) is in te rms  of the constants Cn’s, there i s  no loss of 
generality by assuming that i t  acts in the direction of the outward normal, a s  
was done in Equation (19b). The solution for  the constants will automatically 
adjust themselves to conform to the true physical situation as long a s  a con- 
s i s  tent sign convention is maintained. 

The meridional displacement v i s  

Equations (19) may be expressed in te rms  of the displacements by 
utilizing the following relations for  the s t r e s s  resultants given in 
Reference 5. 

Ne =a [m a v t  v v c o t e - ( i t v ) w ]  

where 

Eh 

2 1 - v  
D =  

- 13  - 
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On substituting Equations (20)  into Equations (19) and introducing the non- 
dimensionalized displacement component s 7 and 77 defined by 

4 2  

D 
Pa v s i n w t  v =  

4 2  
P a w  - 

D 
w sinwt w =  

and the pressure given by Equation (18 ) ,  we obtain 

1 Q) 

n C 
-p (P) P n n  n= 1 

where 

The displacement components in nondimensional form will simply be referred 
to as displacements or  displacement components in the remainder of the 
report. 

UNCOUPLED DIFFERENTIAL EQUATION FOR MERIDIONAL 
DISPLACEMENT 

Equations (22)  and (23)  may be decoupled to yield a differential equa- 
tion expressed in  terms of the displacement component V alone. 
expression for W from Equation (23 )  is substituted into Equation (22) ,  we obtain 

If the 

- 14 - 
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where 

2 2 2 4  
2 ( 1 -  Y )t ( I +  3 v ) K U  - K  w 

X =  

l t v  
2 2 + =  

( 1 - v  ) - K o  

24c 

This equation may, in turn,  be expressed in t e rms  of independent variable 
p according to the relation given in Equation (10). Thus, 

Transposition to Hypergeometric Equation 

The f i r s t  two t e rms  of Equation (25) may be transposed into a hyper- 
geometric equation. To do this, f irst  let  

- v = (1- p 2 ) 1/2= 

Then Equation (25) becomes 

The introduction of a new variable z ,  defined as  

1 
2 = t - ( l  - p )  

- 15 - 
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into this equation leads to  

d2 F dF 
Z ( 1 - z ) T - k  2 ( 1  - 22)-  - (2  - x ) F  

dzL d z  

P (1  - 22)  
n d  

n= 1 2 

The homogeneous p a r t  of Equation (29) i s  recognized a s  a hypergeometric 
differential equation. 
only one solution exists (Reference 6 ) ,  and this is given by the hypergeomet- 
ric function 

Since the constant coefficient dF/dz  is  a n  integer, 

where 

C Y =  1 [ 3 t ( l t 4 X )  1 / 2 1  
2 

p = '+ [ 3  - (1 t 4X) 1 /2] 

Reduction of Or der  of Differential Equation 

Having one homogeneous solution of Equation (29) ,  a new linear dif- 
ferential equation of one order  lower can be obtained. Generally speaking, 
this is analogous t o  reducing the degree of a n  algebraic equation when one 
solution is known. F r o m  the theory of ordinary differential equations, it 
may be recalled that this homogeneous solution will enable the determina- 
tion of the complete solution of the original second order  differential equa- 
tion by quadratures (Reference 7). The method of solution is based on the 
variation of paramet e r s. 

Let 

F = f(z) F1 (a, P; 2; Z)  

Substituting Equation (31) into Equation (29), and bearing in mind that 
F l (a ,  P; 2; z) is a homogeneous solution of the original equation, a new 



NORTH A M E R I C A N  A V I A T I O N .  INC. SP.4CE and INMRMATION S Y S T E M S  DIVISION 

differential equation of second order is  obtained for  determining f(  z). 
ever, this equation i s  of the f i r s t  order in  the variable df/dz. Hence, i t  can 
be written a s  

How- 

Dl 1 - 2 2  df 
2) dz + d df 1 

-{-) t - 
dz dz dz 

1 z - z  

m 

Equation (32) has an integrating factor u(z) af the form 

2 2 2  
) d z =  z (1  - Z )  F1 -1 1 - 2 2  

2 
u(z) = exp 2 (- - t 

/;l dz z - z  
(33) 

Multiplying Equation (32) through by this integration factor, the result  is 

P ( 1  - 2z) (34) d 
4 1  - 4 F1 

d df du df 
dz dz dz dz 

u-(-)+ - - = - -  
n n= 1 

or  

(34) 
d C OD 

F1 dz = -?(-)zAz(l n - Z )  F1 Pn(l - 22)  
PO 

z (1 - z) 
n= 1 dz 2 P 

Integrating this equation once and reintroducing p a s  the independent variable 
resul ts  in  

- 17 - 
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where b is an arbi t rary constant. Integrating once again, the equation 1 

f = b  t b  
0 

i s  obtained, where bo is another constant of integration. By retaining the two 
arbi t rary constants introduced in  each of the integrations, the solution for 
the meridional displacement V, obtained by using f(z),  will represent  the 
complete solution for the differential Equation (25). 

SOLUTION FOR MERIDIONAL DISPLACEMENT 

Upon integration, the coefficient of b l  in Equation (36) leads to t e rms  
Consequently, for a finite solu- that contain a singularity at p. = 1 (e  = OO). 

tion to exist at that point, b l  must be taken as zero. 
(26), (31), and ( 3 6 ) ,  then, the following expression is obtained for the 
meridional displacement: 

In view of Equations 

Boundary C ondi t i ons 

Because of axial symmetry, the displacement 7 must be zero at 
8 = 0"; this condition is automatically satisfied by Equation ( 3 7 ) .  The con- 
stant bo can be determined from the boundary condition at 8 = m / 2 .  In the 
present case,  the axial motion is  restricted so that V i s  zero  a t  this point. 
On applying this boundary condition, bo is found to be 

- 18 - 
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Substitution of this expression for b into Equation ( 3 7 )  gives for 7 
0 

(39)  

SOLUTION FOR RADIAL DISPLACEMENT 

Since V is now known, the radial displacement for the hemispherical 
shell may be obtained directly from Equation (23). 
7 f rom Equation (39) .  Equation (23)  gives 

Thus, on substitution for 

n= 1 

m 

+ c  0 + C L ( P )  n n  
n= 1 

Since this expression for 5 was obtained without performing any inte- 
gration, there are no arbi t rary constants. 
can be applied to  W. 
theory in which bending stiffness is neglegted. 
lation, W will satisfy the condition of axial symmetry; by implication, i t  
will not contain any singularity at 8 = O " ,  since both V and p(a, 6) a r e  regular 
a t  this point. 

Hence, no boundary conditions 
This is the consequence of using the membrane shell 

Because of the original stipu- 

If it is assumed that the hemispherical- shell p r c ~ . ~ i d ~ , d  ~?.+th rigid 
ring at the equatorial plane, thus giving the edge simple support, then 

w (;) = 0 (41) 
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However, the absence of an arbi t rary constant precludes the satisfaction of 
this condition. Therefore, this or  whatever other boundary conditions may 
be imposed on=  must be treated as a constraint. 

IMPOSITION OF INTERFACE CONDITION 

The interface condition, already discussed in Section 3, represents 
the compatibility condition that must exist between the fluid and the shell a t  
their common boundary and that will be applied to couple the system. 

In view of Equation (5b), the condition stipulated by Equation (3 )  for 
compatibility of velocities may be rewritten. 

r = a  

The minus s ign  must be present since the positive radial  direction for the 
shell and the hemisphere of fluid a r e  opposite eachother. 
Equations (14)and (Zlb), the foregoing relation becomes 

Substituting from 

m 

D n = l  
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SECTION 5. FORMULATION OF EIGENVALUE PROBLEM 

The eigenvalue problem for deterriiining the natural frequencies and 
corresponding mode shapes of the coupled fluid-shell system is formulated 
using three equations that were obtained as a result  of imposing the necessary 
boundary conditions of the problem. These three equations a r e  the liquid 
C r e e - r .  .-..-. 

tion of zero-radial  displacement a t  the equatorial plane given in Equation 
(41), and the condition of compatible velocities a t  the interface given by 
Equation ( 4 3 ) .  The solution of these three equations taken simultaneously 
will yield the natural frequencies. Other than the trivial case in which all 
the C n ' s  a r e  zero,  i t  is  apparent that the ser ies  in these equations cannot 
be satisfied term by term. This, together with the complexity of the 
expressions involved, excludes all possibility of an analytical solution. 
Hence, some approximate numerical method of solution must be used. 
approximate method used herein to formulate the eigenvalue problem is 
based on the least  squared e r r o r  technique. 

6 J ------ , ~ r f a c e  S c u ~ d a r y  coEdition niven in Fqrration ( 1  5), the bn1-lndar.ir rnndi -  

The 

LEAST SClUARED ERROR FORMULATION 

Since, from a practical point of view, the ser ies  representation for 
the velocity potential must  be truncated, the boundary conditions given by 
Equations (15), (41), and ( 4 3 )  will be satisfied only approximately. However, 
the intention is to t rea t  the boundary condition for W as  a constraint s o  that 
i t  will be satisfied exactly within the limitation of using only a finite se r ies  
representation for the velocity potential. Similarly, within the same limita- 
tions, the equation obtained for the integrated e r r o r  resulting from the 
approximate satisfaction of the free  surface boundary condition for tne fluid 
is also treated a s  a constraint. 

The difference between the exact and approximate satisfaction of the 
f ree  surface boundary condition is denoted by the functional e r r o r  q1. Thus, 

- N 

0 

n = O  

'n l-L) r n- l  [A Pn (0) f -(-) aw2 r P ( 0 )  

n a  d P  g a  
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If this expression is integrated over the f ree  surface of the fluid, the 
integrated e r ro r  E i s  obtained. Accordingly, 

0 

From Equation (43), the e r r o r  112 along a meridian, resulting from 
the truncation of the ser ies  expansion in Legendre polynomials, i s  

N 

n = l  D 

Since i t  is the interface condition that will have the most influence on 
the frequency for the interaction problem, it is desirable to make q2  a s  small  
as possible. F o r  this reason, we will consider i t  from a least  squared e r r o r  
standpoint instead of averaging the e r r o r  out over the ser ies  as was done 
with 91. 

To obtain the integrated squared e r r o r  for this case,  12 is f i rs t  squared and 
then integrated over the surface of the hemisphere s o  that 

TT - 
f - 2  

Equation (47) contains a total of N t 2 unknowns, a s  does Equation 
(45). There a re  N -I- 1 unknown Cn's plus the unknown frequency w. 
order  for  the finite ser ies  representation of the velocity potential to provide 
the best possible f i t  for the satisfaction of the boundary conditions, these 
N t 1 unknown Cn's  a r e  determined in such a manner a s  to render € 2  a 
minimum subject to Equations (41) and (45) treated a s  constraints. This is 
equivalent to minimizing the function 

In 
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where h1 and h2 a r e  Lagrangian multipliers. Hence, 

5 i j  

I I 
1 I 
I I 
I I 
I 1 
I I 
I I 

I I 
I I 
I I 
I I 
I I 

! o ! o  

I I O I  ' 0  

where 

i , j = O , l ,  ..., N 

= o  

This linear algebraic system of N t 2 homogeneous simultaneous equations 
has a nontrivial solution only if  the determinant of the above equation is zero. 

The solution of the determinantal equation will yield N t 1 natural f r e -  
quencies. Only the f i rs t  few frequencies will have any physical significance, 
however, since i t  takes more and more te rms  in the ser ies  expansion for the 
fluid pressure  in order to be able to represent i t  accurately as the frequency 
increases  . 
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SECTION 6. SOLUTION FOR FREQUENCIES 

The eigenvalue problem a s  formulated cannot be solved unless a digital 
computer is used. 
systematic trial-and-correction process which searches for an o until the 
frequency determinant vanishes. A modal frequency is assumed that permits 
the calculation of the hypergemv-letric f.;?ction Fi (e, g; 2, Z )  and the displace- 
ments V and %i corresponding to this estimated frequency, 
that appear in the expressions for F and W a r e  evaluated numerically by using 
the trapezoidal rule. 
ficients a r e  actually calculated a t  each discrete point used in the numerical 
process.  
to facilitate the bookkeeping involved. 

The method of solution a s  programmed is essentially a 

The integrals 

Since the constants Cn's a r e  unknown, only their coef- 

This calculation requires the arranging of these values in a matrix 

With the determination of the displacement 5, numerical values for al l  
The determi- the elements appearing in matrix Equation (49) a r e  calculated. 

nant of the matrix is then evaluated. 
time with the frequency incremented to initiate the Newton-Raphson method 
of root determination, which continues until a zero value for the determinant 
is obtained within the specified degree of accuracy. 

This process is repeated a second 
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. 
1 -  

CONC L U  DING REMARKS 

In this section of the report, it was hoped that some numerical results 
could have been obtained and conclusions drawn. 
possible due to numerous difficulties encountered during programming and 
also i n  the formulation of the eigenvalue problem. 

However, this was not 

The ground work for the numerical procedure for solving this problem 
Besides the usual problems that was started approximately six months ago. 

a r e  encountered during the development of a new computer program, an addi- 
tional obstacle presented itself in the formulation of the eigenvalue problem 
from Equations (15), (41) and (43) which would give numerical results having 
physical meaning . 

In the first attempt, the integrated squared e r r o r  for the approximate 
satisfaction of both the free  surface boundary condition and the interface con- 
dition for compatible velocities was summed to yield the total integrated 
squared e r r o r  for the system. This expression was then minimized, subject 
to the constraint that TG (m/2) = 0. 
system of linear algebraic homogeneous equations was evaluated, i t  was 
always positive for all frequencies, with the possible exception of w = 0. 
Later on, it occurred that the integrated squared e r r o r  for the two boundaries 
should be given different weights instead of the same weight, since one 
boundary condition must have a greater influence on the frequency than the 
other. 
cedure should be carr ied out, i t  was decided to formulate the eigenvalue 
problem using the three pertinent equations by the collocation method. 
value of the frequency determinant resulting from this formulation was 
always negative. 

When the resulting determinant of this 

Since a t  that time i t  was not apparent a s  to how this weighing pro- 

The 

Both of the above formulations of the eigenvalue problem are in con- 
flict with physical reality and, hence, were discarded. The present formu- 
lation discussed in  Section 5 appears to be most promising. Although no 
substantiating evidence is available, very preliminary computing results 
seem to support this observation, a s  indicated in Figures 2 and 3. 
fore, it is recommended that additional funds be allocated for continuation of 
this study in order to bring it to a successful conclusion. 

There- 
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Figure 2.  Mode Shape for Hemispherical Shell Filled with Liquid Oxygen, 
f = 0 . 4 9 5  cps 

Figure 3 .  

I 

-i 

Mode Shape for Hemisphirical Shell Filled with 
f = 0.699 cps 

I Aquid n 
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