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FOREWORD

This report was prepared by the Space and Information Systems
Division of North American Aviation, Inc., Downey, California, for the
George C. Marshall Space Flight Center, National Aeronautics and Space
Administration, Huntsville, Alabama, under Contract No. NAS8-11490,
"Study of Longitudinal Oscillations of Propellant Tanks and Wave Propaga-
tions in Feed Lines," dated January 6, 1965. Dr. George F. McDonough
(Principal) and Mr. Robert S. Ryan (Alternate) of Aero-Astrodynamics
Laboratory, MSFC, are Contracting Officer Representatives. The work is
published in five separate parts:

Part1 - One-Dimensional Wave Propagation in a Feed Line

Part II - Wave Propagation in an Elastic Pipe Filled With
Incompressible Viscous Fluid

Part IIl - Wave Propagation in an Elastic Pipe Filled With
Incompressible Viscous Streaming Fluid

Part IV - Longitudinal Oscillation of a Propellant-Filled Flexible

Hemispherical Tank

Part V - Longitudinal Oscillation of a Propellant-Filled Flexible
Oblate Spheroidal Tank

The project was carried out by the Launch Vehicle Dynamics Group,
Structures and Dynamics Department of Research and Engineering Division,
S&ID, Dr. F.C. Hung was the Program Manager for North American
Aviation, Inc. The study was conducted by Dr. Clement L. Tai (Principal
Investigator), Dr. Michael M. H. Loh, Mr. Henry Wing, Dr. Sui-An Fung,
and Dr. Shoichi Uchiyama. Dr. James Sheng, who started the investigation
of Part IV, left in the middle of the program to teach at the University of
Wisconsin. The computer program was developed by Mr. R. A. Pollock,
Mr. F. W. Egeling, and Mr. S. Miyashiro.
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ABSTRACT

The present study describes an analytical method
for determining the axisymmetric longitudinal mode
shapes and frequencies of an incompressible and
inviscid fluid contained in a pressurized, flexible
oblate spheroidal propellant tank. Series expansions
for the fluid velocity potential and the tank wall deflec-
tions are combined through the boundary conditions
and shell equations of motion to obtain an eigenvalue
problem whose solutions are the system frequencies
and the coefficients of the series. In the analysis, the
effect of the ullage gas pressure is included. The
matrix eigenvalue problem for the case of a hemis-
pherical tank was previously programmed for the
computer solutions by Tai and Wing (Reference 1).
This program will be directly applied to the present
eigenvalue problem for the numerical solutions.
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NOMENCLATURE

Semi-major axis of oblate spheroid
Unit vector

Semi-minor axis o
Nondimensional arbitrary constants, Equation (10)

Half the distance between foci of the ellipse and
equal to (b-a)

Extensional modulus, Equation (52) and differential
operator, Equation (78)

Arbitrary constants, Equations (6) and (8)
Strains in the middle surface of the shell
Young's modulus

Nondimensional arbitrary constants, Equation (17)
Inertia forces

Functional coefficients, Equation (65)
Thickness of the shell

Scale factors, Equation (29)

Functional coefficients, Equation (60)
Functional coefficients, Equation (60)
Imaginary number

Functional coefficients, Equations (67) and (68)

Difference terms of the first order, Equation (84)

- %i -
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Stress couple resultants
Stress resultants
Legendre polynomials
Ullage pressure

Static ullage pressure

External loads in the shell equations of equilibrium
and P¢ is the liquid pressure in the present analysis

Nondimensional liquid pressure

Resultant velocity of liquid

Legendre polynomials of the second kind
Transverse shearing stress resultants
Cylindrical coordinates, Figure 1

Function of independent variable rj, Equation (66)
Principal radii of curvature

Difference terms of order higher than the
second, Equation (85)

Integrated squared error over the interface,
Equation (108)

Integrated squared error over the liquid surface,
Equation (107)

Total integrated squared error, Equation (106)
Time
Hoop, meridian and normal displacements

Homogeneous solutions of the linear differential
equation of second order, Equation (72)

- xi‘i -
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gl

<l
g

g'q: §¢

Pf

Particular solution of the linear differential
equation of second order, Equation (72)

Nondimensional meridian and normal displacements

Change in the ullage volume due to a unit deflection
of the m¥® normal deflection, Equation (17)

Displacement of liquid surface, Equation (15)

Change in the ullage volume due to the shell
motion, Equation (16)

Ullage volume

Static ullage volume

Ullage normal displacement

Separated dependent variables, Equation (3)
Cartesian coordinates, Figure 1

Functions of independent variable 1, Equation (42)
Isentropic exponent, Equation (13)

Symbols of difference defined by Equation (80)
Symbols of difference defined by Equation (82)
Lagrange multiplier

Poisson's ratio

Oblate spheroidal coordinates, Figure 1l

= b/c

Oblate spheroidal coordinates in meridian and
hoop-directions, respectively

Mass density of the shell

Mass density of the liquid

- xiii -
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¢ Velocity potential of the liquid for steady flow
] Velocity potential of the liquid
w Natural frequency
Q = wl
- xiv -
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INTRODUCTION

Knowledge of the dynamic behavior of thin-walled fuel tanks is of
great importance in launch vehicle and spacecraft design. Thin elastic
shells are used as structural elements of such fuel tanks. With respect to
the dynamic behavior, of prime importance are the natural modes and
corresponding natural frequencies of vibrations. Analysis of such response
must account for deformational properties of both the liquid and the shell
and for their mutual constraints. To develop an understanding of the action
of a liquid and shell combination, the longitudinal oscillation of liquid in a
pressurized thin-walled oblate spheroidal tank is considered.

The small motion of an ideal liquid in a fixed or moving rigid container
of simple geometrical shape, such as a circular cylindrical tank and a
spherical tank, is well known; and the methods of analysis for such prob-
lems are available for obtaining approximate solutions. Budiansky (Refer-
ence 2), Hwang (Reference 3), and Chu (Reference 4) have analyzed the
natural oscillations of liquid in rigid tanks by the source-sink approach,
leading to integral equation statements of the eigenvalue problem. A number
of studies have also been made for a thin-shell container of cylindrical and
spherical shapes. Coale and Nagano (Reference 5) have dealt with the
axisymmetric dynamic behavior of a cylindrical tank with a hemicylindrical
bottom by the method of minimization of the integrated squared error.
Gossard (Reference 6) has introduced the energy method for the axisym-
metric dynamic response calculation of liquid-filled, hemispherical elastic
membrane shells and has demonstrated the numerical calculations by free
and forced response calculations for sloshing liquid. Palmer and Asher
(Reference 7) have discussed the axisymmetric longitudinal oscillation of
thin elastic shells of revolution partially filled with an incompressible liquid
and containing a pressurized gas in the remaining volume by the direct
stiffness method. The very recent work of Tai and Wing (Reference 1) is
concerned with the axisymmetric oscillation of a propellant—f{filled flexible
hemispherical tank and the method of approach is basically the same as in
the present report.

The method of analysis reported herein is based on a mathematical
model of a membrane shell filled with an incompressible and inviscid fluid
in axisymmetric harmonic motion. It followed that the velocity potential
satisfying the Laplace's equation is first established, and then the equations
of motion of the shell elements, inciuding the {orcing functions obtained
from the velocity potential, are solved for the shell displacement components

SID 66-46-5
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with the boundary conditions. Finally, the natural modes and corresponding

natural frequencies of the liquid-filled oblate spheroidal tank are determined
by the method of minimization.
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METHOD OF ANALYSIS

The tank model upon which the present analysis is based is a flexible,
liguid-filled, oblate spheroidal shell. In Figure 1, the shell configuration
and the oblate spheroidal coordinate system (§, 1, ¢) are shown, together
with the rectangular (x, y, z) and the spherical (r, 6, ¢) coordinate systems.
The displacement components {u, v, w} of the shell are also shown. The
liguid in the shell is assumed to be both incompressible and inviscid. The
volume above the liquid's free surface is filled with a gas that is assumed to
have no significant dynamics of its own in the frequency range under con-
sideration. The pressure Py due to such gas acts uniformly on the free
surface of the liquid. Only an axisymmetric motion is considered. The
inertia forces of the shell in both the radial and meridian directions are
included.

1. VELOCITY POTENTIAL OF LIQUID

It is shown in hydrodynamic theory (Reference 8) that the continuity
requirement for an incompressible, irrotational liquid is stated by Laplace's

Figure 1. Oblate Spheroid Shell Geometry and Shell Displacement

-3 -
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equation. The velocity potential that satisfies the Laplace's equation may
be taken to be

® = ¢ cos wt (1)

for harmonic motion where w is the natural frequency, t is the time, and ¢
represents the velocity potential for steady flow. The Laplace's equation
for the case of the axisymmetric flow of a propellant contained in an oblate
spheroidal shell is written as

2 0 2. 99 0 2 09
Ve = — [+ ——+——[1~ —|=0 2
By the method of separation,
¢ = X(§) Y(n) (3)
Then, two separate ordinary differential equations are
d 2, dX
—_— — - + .=
3E [(l + € )dél n(n +1) X 0 (4)
d [ 2, dY
— - — | + +1 = 5
w0-nH ] +amen Y=o (5)
where n is a non-negative integer.
Solving Equation (4) for X gives
X = Dy P (i§) + D, Q, (if) (6)

SID 66-46-5
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where Dj and Dy are arbitrary constants and P, and Q, are Legendre
functions. In order to avoid singularities at £ = 0, D, is assumed zero.
For this case,

X = D, P, (if) (7)
Solving Equation (5) for Y gives
Y = D3 Py (n) (8)

where D3 is an arbitrary constant.

From the solutions given by Equations (7) and (8), it is reasonable to
assume that

2 .2 .
6= C el By + ) By Py (i) Py (n) (9)
n=1
where
C = half the distance between foci of the ellipse and equal
tob - a
b
to = =
By, By = nondimensional arbitrary constants to be determined
. (2n)! S n{n -1) ,. ,..n-2
= ———————— - ———— +
Py (i6) = — | (16)" - TR (i)
27 (n!)

n(n -Y(n-2)(n-3) . , 04
24(Zn -1 (2n -3) 0 ° ] }

SID 66-46-5
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+

_ (2n)! n _n(n-1) n-2
7 [” 2(Zn -1 "

n(n-1)(n-2)(n-3) n-4
2:4(2n - )(2n - 3) "

The substitution of Equation (9) into Equation (1) yields the velocity
potential:

@

d = C2 éi w| B, *t z B P, (i) P, (n) | cos wt (10)

n=1

that is capable of describing any admissible axisymmetric velocity pattern
of liquid within the oblate spheroidal shell.

2. PRESSURE ON THE SHELL WALL

The fluid pressure on the shell wall, Pg, can be related to the velocity
potential, @, through Kelvin's equation (Reference 7)

9d 1 2
+ 2y = = P 1
Pg Pf 51 > Prda u (11)

where p; is the density of liquid, q denotes the resultant velocity of the fluid,
and Py is the ullage gas pressure. The term > Py g2 is small compared
with the other terms and so it will be neglected here. It is assumed in the
present study that the ullage gas dynamics is neglected. Hence, the liquid
surface is subjected to uniform pressure, Py.

Substituting Equation (10) for the velocity potential, &, in Equation (11),
and neglecting the terrn—;-_pf q? gives

2 .2 .
Pe = C" &7 p @sin wt|By + Z B, P, (if) P (n) | + Py (12)
n=1
where 2 = w©.
-6 -
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The ullage pressure variations can be related to variations in the
ullage volume through the linearized form of the adiabatic, isentropic,
perfect gas relation, which is derived from

y

P .V

us Yus = (Pus + Py) (Vys + Vu)Y (13)

where P o is the static ullage pressure, Vg is the static ullage volume,
Vyu is the fluctuating uliage voiume and Y is the isentropic exponent. Thus,
the binomial expansion of the right-hand side of Equation (13), after
linearization, gives

Y2 (14)

The displacement of the liquid, vy atn = 0, as shown in Figure 2, is
obtained from the expression:

vy (€, 0, t) 1 a0
9t " CE o (15)

The fluctuating ullage volume, V, can be related to the shell and liquid
motions by the equation

dVy = 27CE vy,d(CE) + dVpg (16)

where the first term on the right-hand side gives the effect of the liquid
surface, and the second term is due to the shell motions. This term, Vzg,
is determined by the expression

dVpy = sinwt > E d Vg, (17)
m=0

SID 66-46-5
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-— X
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Figure 2. Ullage Space and Liquid Displacement
where E,, Ei, E;, ---are nondimensional arbitrary constants and should

be determined as part of the solution.Vgm is the change in the ullage volume
due to a unit deflection of the mth assumed normal deflection, wy for the
ullage space as defined by

w, = sin wtz E,, (18)

m=0

Integrating Equation (16) from £ = 0 to £ =¢E, gives

€o
vy = 2nC [ B vpo db + Vg (19)
0

Integrating Equation (17) gives

Vzg = sin wt z Em ng (20)
m=

SID 66-46-5
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Substituting Equation (1) for ® in Equation (15), and integrating the result
fromt=0tot=1tgives

1
EE'B—'I dt (21)

VZo:f
0

Differentiating Equation (9) with respect to n gives

o

= ¢* gi w z nB_ P, (0) Py (if) (22)

Rild
on
n=0 n=1

Thus, the displacement of the liquid, Vior atm =0 is obtained as

o0

P, (i€)
vio = C gi sin wt z n B P (0) _n?__ (23)

n=]

The fluctuating ullage volume, V,, is then determined by substituting
Equations (20) and (23) into Equation (19) as

g [o0]
v o= 2.TrC3§i sin wt/o ° annPn_l (0) P(if) dt
n-l

+ sin wt z Em Vgm (24)

SID 66-46-5
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where the integration of Py (if) is

£, Pn(it )+ i Pnoi(ifg) - i Py (0)]

° 1
|7 Patit) & = —
0

Substituting Equation (24) into Equation (14) gives

3 ©
2n1C vy Py § s1nwtannPn_1(0)

——— | £0 Pnlifo) + 1Py (ifg) - i Pn(0)

n=1

Y P sin wt

us
- v z Em Vgm (25)
us
m=0

Substituting Equations (10) and (25) into Equation (11) gives the fluid pressure
acting at the oblate spheroidal shell as

2 .2 . .
= C° 5 p, 2 sin wt [BO + 2 B_ P, (it,) Pp (n)

3 2 o
2wC” v Pyg £ sinwt 2 n

n+tl B Pn_]_(O) )

us n=1

£, Pp (ko) + 1Py (ifo) - iPn_l(O)]

[e0)
Y Pus .
-—— sin wt En ng (26)
m=

SID 66-46-5
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3. BOUNDARY CONDITIONS

According to Lamb's hydrodynamics, if the Cartesian coordinate
system is used, the normal liquid velocity at the free surface is expressed
as

2 X
w
=% atz = 0 (27)

where g is acceleration of gravity.

For the general case, the gradient of the velocity potential, V& is
expressed as (Reference 9)

3

1 00 —

7% = _S_: —_— é_é—— an (28)
n= n

where £, €5, and £3 are orthogonal curvilinear coordinates, e_fI, ay, and ag
are unit vectors, and hy, hy, and h3 are scale factors and expressed as

2

2 2
n =)+ (58n) (58 (29)

n=1, 2, and 3

The Cartesian coordinates are related to the oblate spheroidal coordinates
by

x=CJu+e2)(-nd) cosé
y = CJ/(1+£2)(1-7n%) sin¢ ¢ (30)
z = Cétn
J
- 11 -
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For the case of oblate spheroidal coordinates, £,, 3@, and hy are written
as (Reference 10):

€1

C gy gz =n, g3 = COS'(p

a]‘:;g,,a—"zzaj;],a;:—a.d)

- (31)
2
R fe2em2 (g2 0 - ad)
hy = —— h, =C ———, h3 =C -~ o~
e+l 1 -n¢ sin¢
Thus, the scalar component of V& in the n-direction is obtained from
Equations (28) and (31),
2
1 0% 1 1 -n o
W ST Vizo 3 o, (32)
2 "2 £E° +m

Hence, the boundary condition at the free surface of the liquid contained in
the oblate spheroidal tank is obtained from Equations (27) and (32) as

atn = 0 (33)

At the interface, the normal velocity of the liquid and the shell must be the
same. Such condition is expressed in terms of spherical coordinates as

0d oW
g - .2 = 3
- 5t atr = a (34)

where a is the radius of the spherical shell and the normal displacement of
the shell, w, will be determined in the shell analysis. The scalar component

- 12 -
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of V® in the £-direction is obtained from Equations (28) and (31),

1 8¢ _ 1 €:.2+1e_3§_

Joee 1 35
By % T CV iz, 2 o, (35)

Hence, the boundary condition at the interface between the liquid and the
oblate spheroidal tank is obtained from Equations (34) and (35) as

2
Eo +1
%\/ s La‘z - -_Z“: at £ = £ - (36)

£ +n1
(0]

4., EQUATIONS OF MOTION FOR MEMBRANE SHELL

The equations of motion in terms of oblate spheroidal coordinates can
be obtained from the general expression introduced in Reference 11 as
follows:

a?;:n + aqggjdm + Ny :; "N :: " a;? *ona(Py ¥ fy) =0 (37)
BZZ:% + a?&? * Qﬁl? i a;:¢+ % (Pgtfp) = 0 9
13-
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80.1,] qu 80.4) Mn 80.¢ E)an

- + My — + —— +Q_ a.ay =0 (41)
oE, 5, ¢ BE, N“m>ag¢ n %n%

where Nn, N¢, qu,, and N¢>T1 are stress resultants; Mﬂ' M¢, an), and

M¢ are stress couple resultants; Qn and Qg are transverse shearing stress
resultants; Pg, PT]’ and P¢ are lateral loads; fg, f‘”l’ and fq; are inertia
forces; R’ﬂ and Rq, are principal radii of curvature; and it is found from
curvilinear coordinates that

62+ 0’ JE2 + @ -n?)
a, = C\|l————, a, = C
i l-nz ¢ sin ¢
£y = £, = coso o (42)

3/2

J(£2 4 1) (g2 + n?) (82 +n%)

R,n =C g , R(b = C
° E v ES +1) J

If the components u, v and w of displacement are defined as shown in

Figure 1, the expressions to be substituted for f¢, fn, and fg, respectively
are

2 2
-ph?_;’. and f, = -ph — (43)
ot at ot

h
urr
1
©
oy
Hn
1

where p is the mass density of the shell and h is the thickness of the shell.

In the present study, a thin oblate spheroidal membrane shell is
assumed. If the bending stresses in the shell are neglected, it follows that

- 14 -
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It is also assumed that the oblate spheroidal tank is subjected to an axi-
symmetric motion. Thus, if the tank oscillates symmetrically with respect
to the z-axis, then

I
g
"
e
I
o

Py

(45)

I
2

-0
0
o

Nng =

Under the conditions of Equations (44) and (45), the equations of motion,
Equations (37) through (39), are simplified to

oNy, aa,, 3%y
+ N -N,) =5 = h—— 46
ag ( ¢) agn q)P 81:2 ( )
82u (47)
0 = a_ayph — 4
¢ P 52
2
_1_\1—1’] + I.\i? + P - h a_VV- (48)
R £ PP 2
Ro Re ot
The substitution of Equations (42) into Equations (46), (47), and (48),
respectively, yields
aNn
n
/ 2
(é +n )(é +1) 9 u
h——>— 50
0= sin ¢ P 8t2 (50)
- 15 -
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: £/ + 1)

2 N, + N, + P = -ph
n 3/2 NeT TE="P
c /(g2 + 1)(E2 + n?) c(d + 0% o

0w

> (51

Equation (50) indicates that either the velocity in ¢-direction is constant or
the corresponding displacement is zero. Hence, the equations of motion,
Equations (49) and (51), are used simultaneously to solve for the displace-
ments v and w. Under the usual assumption for thin shells, that the stress
components normal to the middle surface are small compared with the other

stress components and may be neglected in the stress-strain relations, the
stress resultants, NT\ and Nq), are obtained as

Nn =D (enn +v e¢¢)
(52)

N¢=D(e¢¢+v en)

Where D is extensional modulus and equal to Eh/(1 - v2), and enn and ego
are the strains in the middle surface of the shell.

The strains in the middle surface of the shell, in terms of oblate

spheroidal coordinates, can be obtained from the general expression intro-
duced in Reference 11 as follows:

1 v u 8(11,] W )
enn o 58 T 95, R
an " anaq) o n
) (53)
1 Jdu v aa¢ W
e = — —— % -
- 16 -
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The substitution of Equations (42) into Equations (53) yields

ov u 9
- —+

2 [1£2 1 22v122 90
Bn C% J(E2 +n2)(E2 + )

EOW

2 2 2
C/(E2 +1) (£2 + n?)

1 Ju v

epp = Y X
c/iEZ+n-nh) 7% et gz +n?) g2+

s (54)

2
e Jed 41
5%]—[(3\/(&(2)+1)(1-T12)]- 20 77 v
C(E2 +1%) J

- 17 -
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For an axisymmetric motion, Equations (54) are simplified to

éow ]
_ By
" PN R
(55)
g '\/§2 + 1w
. _ nv _ o o

oo 3/2

e + 3 - ?) &+ o) J

The substitution of Equations (55) into Equations (52) yields the stress
resultants in terms of the displacements:

goW vnv

c~/<g(2) + 1)(@2 + nz) c«/(gi + nz)(l ; nz)

(56)

_€o~/§(2)+1w _ W E e
3/2 N
ol A0 ckie ) chEeaD)

W
v&o

c«/(gz + 1)(@2 )

Substituting Equations (56) for Ny and Ng in Equations (49) and (51), and
performing the differentiation, the equations of motion in terms of the dis-
placements are obtained as

- 18 -
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n

1 /1'“2 32V_[ _ n | + 1.0’ + n bv
C §(2)+n2 anZ (\:/(gz+ 2)( 2) C(€2+ 2)3/2 C/(£:+n2)(l-n2)] om

v v n2
L‘/(giur “2)(1 i “2> C(g§+“2> J1n? Cf\/léi-i- + (1-n2> }

3V€On~)§§+1

9 g€ n
+ , | o . /
LJ{gi“)(éi‘L”Z) C(§§+ﬂ2)3 ZJ i [Cng+1 (§i+n2)3/2 c(§§+ nz)s :

[z
+ L )Eon N (T-vinE Ne 1 }w—cph §§+n2 2%y
3/2].7 " D 2 2
2yhe 24 1) (542 2, 2 [1-0% 5 (57)
C(l-n )\égo“)(@oﬁ )C(l-n2)<§o+ ) n ot

n

e T (o
+ > ﬁ-
e (t5+n") C2<§§+“2) 2+ 1)(1-n2‘)(§(2)+n2)

éoﬂ\/{ii-ﬂ-l gi &cz) (g(2)+ 1) 2v go “
t v+ + +
)2] [C2< 3 2]

c1n® (ege o 2r1)(e2en%) Pelen®) P20

"D "D (58)
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To simplify the mathematical manipulation and nondimensionalize the
notations, the following substitutions are made in Equations (57) and (58):

vzcg\_/_'sinwt W
o
w=CE&t Wsin wt
o
b -—Eb p,
(l-v)CgO (59)

Furthermore, the following functional coefficients are introduced:

2 )
B (1) =-(1_:2 _éirnz)
v ) 2 n? € i+ M
= - + - + K Q
T @A) (P )

3 ve NeZe1

o

h (M) = +
P JE () (€
(o} o
o™ 3vgon~}gz+1 (1-v)E_m

ho,) = - -

J(?o+ 1)(1-n2)(§2+n2)- \/l_fﬁz(éimz)z 1 '“2>3/2J€_i:
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(1-v)n godgj + 1 {
3/2

b (203
&erl-nZ [§z+ nz +v (§2+ 1) ]
(o]

* (60)

hns(“) = >
J§§+ 1 (g§+ n?‘)
B, () = - (1+v)nEG + n(1+vn2>
g1t

0B ent - 200

/
£ KQ g(2)+n2 (1+&,2)3 : 2N€:+1

hgz("l) = 2 + +
[§i+n2+v(g:+1)] «/(g(z)ﬂ) (1-n%) Jl_nz(gia,nz) 1-n?

(e
&j’\ll-nz
é 2, <g2+ T12)2
(o] (o]
éz'\jl -nz [§c2)+ n2+ v (&(2)+ 1)] J

h§3(71) = -

The equations of motion, Equations (57) and (58), are then written in the
forms

2 \' aw

<l

d d — —
d—nz-+ hnl(n) I + hnz(") Vv o+ hn3(n) o hq4(n)W— 0 (61)
d— T A7 D —
an F MV heo(MW+ b q(n) Pe= 0 (62)
-21-
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It has been verified that the equations of motion for spherical shells are
obtained by substituting the following expressions into Equations (61) and

(62):

a A
5 =C
C=0 ; (63)
m=cos 8 )

5. SOLUTIONS OF EQUATIONS OF MOTION

Meridional Displacement v

Equations (61) and (62) constitute two simultaneous linear differential
equations for two unknowns, V and W, which will be solved numerically
here as a function of ﬁg for given boundary conditions. From Equation (62),
W is written in the form

W = ggl(n) g'n\z + ggz(n) vV o+ gg3(‘1) lsg (64)
where
N A e
8s1 n) = 3 5
T T T R TR
( gz@(éimz)[aim% v(1ee?)]
g2 n) = -
\/’:F[(Héi)(éimz)?J —éi(&imz)z g ( +§i)2 "2 gi(1+gi)<gi+n2>]
(1465 (& + W)
gg3(ﬂ)=- 24/.2 2 4,2 2% 4 2,2 4 2\,,.2
(1485 )(g4n") -65(8g#n") -5 (1*8,) -2v€0(1+€0)<€0+n2>
- 22 -
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Substituting Equation (64) for W in Equation (61) gives

a2 ag _
—d—ni th M) gt kM) V=R () (66)
where
H(E ,n)
k() = - : . - zx[[' (1.2“2.; 21 2>+
H(E,n)+ £ [6+n®sv (1+67)] RS

3 / 2 / 2
£ l+§ vE 1+€,
ol o { Z-§2-3n2)[ ‘cso o o ] [g2+n2+v(1+gc2)>j!
2

H(&on)m N| <1+ gi) (1 —n2)+ (giq- TF)J:

262 m(1+62)(1-n%)
o - ST )
2 :
go N v?o' 1+§o £24n +v(1+§ ) )

3 / 2
gorl 1+E,~O 2

2
[ afioe@Ve20.2) _ 562620 2) 5,620 462V . (£%+n2) x
L 3EHs /6 tn ) - 28 15t ) 2vE RHE ) Co' ™/
H(ﬁom) 1-71
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[J__é’___z ;e ks ][(1+v)g + )] -
(+8)01)  (Bendihon?

£ m 3vg mi+E2 (1-v)E n
(o) (o] O (o]

+

| Faraey e 1
- vmg&?]
|

3/2

(2) (oot

3 2 2
&2+ e
A e A [Caaatt ]| @
H(E_,m)
HE ,n) , vl n
2 2 | L 2y (enff

(e, m +6 5 [62 + nf e viee))]

2 2 3 [ .2
€ +m EN1+E
(o] KQ- O (0]
2 ‘ 3/2

5 (2+§i—n2)n2 (l+v)§i+(1+vn2) X
) H(g )

+
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tohien

%o + } ¢2 +n (1 -1 )[(1+v)g +1+3vn2]
\/@52)(1-“2) (& +n)~h -n2

+

zé n J1+§
H(éon) N1-7

(& +1 )[(1+V)§ +(1+vn )

3 v’f\}1+2
: e | (10s2) ) - 265 620 )

+
J{Héi)(l-nz) (§§+ nz> Jl-_—n—z

€ n 3w 1+ e

-zvg§(1+gi)]+[ ° + >
(l+§i)(1—n2)(§ i+ nz) («‘é §+n2> “ll-nz

+

(vt n  (-vmg N1+ES ]
X

3/2

) T ) )

3 [fiee?
o (e2+ nz)[(1+v)§(2)+(1+vn2)]]] (68)
H(&O,n> 1+
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3

2\, 2 2
-H(&o,n) (1+€0>(§0+n> 2 2 _
X HE ,m) C go pf981n wt X
o

Rf) = >
HE s [654 a7+ (1462)]

§0 Vgo 1+&’<2) 3 1
[ ' % 2 Bnl z " nPn(igo)Pn-l(n) i

V(R (N S Y Bl

6n(1+€2)(§2+n2>2 3 vgo,/1+§02
nm Pn(iéo)Pn(n)] +( H(E ) [ + :\_
© &1+€,02)(1 %) '(§i+ n2>'\/1 e

’

[ 3(1+ §2)<§2+ nz)z - zéi (gimz) - 2v§§ (1+ gi)] X

£ n
O

(& _,m)
Hor [«/<1+éi)(1-n2)(€§+n2)

.

+

N 1+§z (l-nz) <€i+ n2>~11—n2

+

3vE mfle g (1-v)E 7 (1-v)5 m1+€

o o o - ° ° Czizp Qsin wt X
[ 2(2 22+ 2\ 2 2\ ' o f
1+m <§O+n ) <l-n ) 1+§0 (1-71 > '

. <§ (2)+n2)

21TYC3§2P sin wt
o us

[Bo+ z Bnpn(iéo)Pn(n)] + 7 X
n=1 us
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n . . . . N
= BnPn_l(O)Pn(lﬁo) [gopn(1g0)+1pn_1 (i€ )-iP (0)] .
1

Il

YB d } |
sin wt z E Vo ‘ (69)
Vus m=0 m B “

ey = (462)(E0 ) —eR ) et (o] -2ved ee?) P n?) (70

One of the most obvious ways to solve a linear differential equation
numerically is to replace the derivatives in the equation by their formal
expressions in terms of differences and solve the resulting difference equa-
tion. The present method of solution follows the one introduced in Refer -

ence 12,

To solve Equation(66), two boundary conditions are required. Thus,
the boundary conditions for the displacement, V, are

V=0 at 1 =0
(71)
V=0 at =1
The general solution of Equation (66) has the form
V=C u+C,v+w (72)

1 2

where C, and C_ are arbitrary constants, U and v are independent solutions
of the equation ozbtained by setting R{n) = 0, and w is a particular solution of
the original equation. One condition is available at the starting point, suffic-
ing to reduce the number of arbitrary constants by one, so that the solution
is now effectively of the form

(73)

<l
@]
el
+
gl
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Let W be taken as a solution of Equation (66) so that

% (0) =0 (74)

and U as a solution of the homogeneous equation

dZ dg B
— + knl(n) T + knz(n)V= 0 (75)
dn n
such that
a(0)=0 (76)

The other boundary condition that V =0 whenn=1 provides the equation

0=C a(l)+w(1) (77)

for the determination of C.; G(l) and W(1) are obtained in the solution u(n)
and wW(n), respectively. ith C,, W and w the solution V satisfying the
boundary conditions, Equations (%1) will be found.

A Particular Solution (W)

By using a customary differential operator, D, Equation (66) may be
written in terms of w as

[D? + k(DD + k(] ¥ = R(m (78)

In terms of central differences in Sheppard's notation (Reference 12), the
differential operator D is given formally by

3 2 5 2 2 7 2 .2 2 .9
1 . 2°-3°. )
D:K<H6_|J.6 2 pb 2 -3 pb + 3.4 _> (79)

3! 5! 7 9!
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where h = M1 and the symbols pnd, p.53. . . are defined as

3

, (80)

n=0,1,2,---

2
From Equations (7%) and (80) and the symbolic identity p =1 + 52/4,
the formulas for D%, D3, . . . are obtained. In particular,

2
2 1 <2_ 264 2-22 66 ) 2-22-3 -68 + 2-22-32-42- 610. . >

D=5Vt % 8! To!
h
(81)
2 4 .
where the symbols 6, &, . . . are defined as
2 - _= = )
5 Wn = Wn+l - an + wn—l
2% cw 4w+ 6% -4w + W
Wn T "n+2 n+1l n n-1 n-2
(82)
2m
2m z k/2m
6 - - )-
. = (-1) ( k ntm-k

2 . .
Substituting for D and D~ in Equation (78) the values given by Equations (79)
and (81), and collecting together in a group on the right all differences of
order higher than the second, it follows that

Lw = h2 R(1) + Sw (83)
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where
— 2 — 2 —
Lw =06 w + hkﬂl(n) pow+ h leZ (n) w (84)
3 5 4 6
— RO o ) (a e =
SVT/ = [hknl(n)(———() 30 + .. .)+ 13 "90 +.. . )lw  (85)

To obtain a first approximation, v_vo, for the solution of Equation (83), the’
second term, Sw, is ignored. Hence, _v?/o is obtained by solving the simple
second -order differential equation

L%, = h°R(n) (86)

From the values of W, obtained above and Equation (85), the value of Sw,
is obtained., The first correction, Wl’ is the solution of the simple difference
equation

Lw, =8w_; (87)

the second correction satisfies

LW, =5w (88)

and so on, the desired value of w being given finally by

€
n

gl
-+
gl
+
€l
+

(89)

By the aid of the definition of p& and 62, the value w_ of the first order is
. . n
obtained from Equation (84) as

—_ _ - - 1 _ 2 _
Lw =w - 2w + wn”1 + Ehknl(nn)(wn_*_1 - Wn_l)‘l'h an(nn)wn

n n+1 n

(90)

- 30 -
SID 66-46-5




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Hence, Equation (83) is written as
[1 + 2 hk | 2 - h°k % +
2% | Yoy - [ ) (“n)] Y
[1 lhk ] W —'hZR( M+ Sw
T2 W T A (91)

Similarly, ignoring ail differences of order higher than the third in Equa-
tion (85), SWn may be obtained as

. 1 — _
S¥, " 12 [1 + hknl‘“n)] otz "2 [2 * hkﬂl(nn)] Yol T

6w -2[2-nk | w |+ v - Bk ) | & ]
n-2

(92)
Thus, with initially given values:
W =0 at n=o0
W=o0at n=h (93)
Equation (91) gives successively the particular solution W, atn, as
R S A A (94)
A Homogeneous Solution (u)
From Equation (75), the homogeneous equation for u is written as
D%+ k(D + k()] 5 =0
np N PN B (95)
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The value of @i is found by the same method in computing w above. Thus,

with initially given values:

u=oatm =0
u=oatmn=h ) (96)
the homogeneous solution U is obtained from the following difference
equation:
1+lhk Y| T 2 th mHYyja +
2 P | B n2 n' | "n
1 -2hk_ ()| w_, =su 97
T2 nl n Ya-1 7 %% 97)
where

1 - —
Sﬁn " 12 “ L+ hkn l(ﬂn)] un-!-Z -2 [2 * hknl(nn)] un+l

+ 6T - 2[2 - hknl(ﬂn)] ot [ 1 - bk, 1mn)] -ﬁn—Zl
(98)

Equation (97) gives successively the homogeneous solution Gn atNp as

.t ... (99)

A General Solution (\_7)

From Equations {91) and (97), the end values u(l) and w(l) are deter-
mined; hence, the constant C] can be obtained from Equation (77). Finally,
the general solution of Equation (66) at Ny is obtained from Equation (73) as:

1)
1)

kl

<l
I

ot w (100)

s
=)
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Normal Displacement, w

The derivative of V with respect to "may be approximately obtained in
the difference form from Taylor's series:

— 3 3—
T i dVv h 4V l .
Vn+l = Vn-l + 2hd'n + 3 an + (higher powers of h) (101)
ﬂ:nn =0,

Thus, by ignoring all derivatives of order higher than the third of the series
above,

av | ntl " Vn-1

d - 2h
Mn=m (102)

The n_orma.l displacement, ;n’ is then obtained by substituting Equation (102)
for dAV/dnin Equation (64) as

1 — _ _
Ya " 2n B¢l (nn)(vn-}-l - Vn_l) t g, (MY g () ()

(103)

6. MATRIX EIGENVALUE PROBLEM

Since the form of modal solutions is complex, an exact solution can not
be obtained. Although the series representation for the velocity potential,
Equation (10), would represent an exact solution if an infinite number of terms
were used, as a practical matter, these series must be truncated. Since the
velocity potential, Equation (3), satisfies the differential equation, Equa-
tion (2), and the noninterface boundary condition exactly term-by-term, it is
the liquid surface condition, Equation (33), and the interface condition,
Equation (36), that suffer. These conditions can be satisfied only approxi-
mately. The functional errors can then be defined as:

e =
s Cg nn=o E n=o (104)
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(105)

With these expressions, the total integrated squared error over the boundaries
involved can be expressed as

Sp =5t 5 (106)
where
£o
B 2 2
ss_znc_[ (s, E_,t)eds (107)
o

(108)

In addition to the boundary conditions, Equations (33) and (36), the normal
displacement, w, must satisfy one boundary condition since the differential
equation, Equation (61), is of the first order with respect to w; hence, one
boundary condition is required for such displacement to solve. In the present
analysis, the following boundary condition is considered:

w=0atmn=0 (109)

The frequency, w, and constants, B, and E.,, are then determined by mini-
mizing the total integrated squared error, subject to a constraint, w = o.
The conditions for this minimum are '

0S
T ow
B + >\8B =0 (110)
n n
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T ow
E + )\BE =0 (111)
m m

where \ is a Lagrange multiplier to be determined in the solution.

Equations (110) and (111) are two sets of homogeneous algebraic equations for
the constants By, E,,, and a Lagrange multiplier A\. These equations can be
put in the form of a matrix eigenvalue problem.

7. SOLUTION OF EIGENVALUE PROBLEM

The matrix eigenvalue problem formulated above can be solved only
with the aid of a IBM computer. The method of solution consists of searching
for values of w that make the determinant of the eigenvalue matrix vanish.

An estimated value of the modal frequency w is chosen. Then numerical
values of the coefficients and the Lagrange multiplier at the matrix is evalu-
ated. This process is repeated for successive values of w until a zero value
of the determinant is found to a desired degree of accuracy.

The numerical calculation will be performed by using the existing com-
puter program which has been generated by Tai and Wing (Reference 1) for
the case of longitudinal oscillations of a propellant-filled, flexible hemi-
spherical tank.
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CONCLUDING REMARKS

The present method of analysis seems not to have been used for the
analysis of oscillations of liquid-carrying elastic tanks. Instead, all the
methods that have been published to date are based on the energy method,
requiring extremely elaborate numerical calculations. The present method
is straightforward and does not require such elaborate numerical calculations
as the energy method if the motion is axisymmetric.

Since the method of solution reported herein can be applied to any
boundary conditions and expressed in a general form, the analysis for any
other shapes of the shell and the numerical procedure for different boundary
conditions are not complicated. Hence, the following problem areas are
suggested for future work:

1. The axisymmetric dynamic behavior of membrane shells of
arbitrary contour;

2. The axisymmetric dynamic behavior of a cylindrical tank with
a flexible, inverted oblate spheroidal bulkhead;

3. The axisymmetric dynamic behavior of a cylindrical tank with
a flexible, inverted arbitrary-shaped bulkhead;

4. Combined membrane and bending theory for the axisymmetric
dynamic behavior of a cylindrical tank with a flexible,
inverted oblate spheroidal bulkhead.
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