6 research outputs found

    BCR-associated factors driving chronic lymphocytic leukemia cells proliferation ex vivo

    Get PDF
    International audienceA chronic antigenic stimulation is believed to sustain the leukemogenic development of chronic lymphocytic leukemia (CLL) and most of lymphoproliferative malignancies developed from mature B cells. Reproducing a proliferative stimulation ex vivo is critical to decipher the mechanisms of leukemogenesis in these malignancies. However, functional studies of CLL cells remains limited since current ex vivo B cell receptor (BCR) stimulation protocols are not sufficient to induce the proliferation of these cells, pointing out the need of mandatory BCR co-factors in this process. Here, we investigated benefits of several BCR co-stimulatory molecules (IL-2, IL-4, IL-15, IL-21 and CD40 ligand) in multiple culture conditions. Our results demonstrated that BCR engagement (anti-IgM ligation) concomitant to CD40 ligand, IL-4 and IL-21 stimulation allowed CLL cells proliferation ex vivo. In addition, we established a proliferative advantage for ZAP70 positive CLL cells, associated to an increased phosphorylation of ZAP70/SYK and STAT6. Moreover, the use of a tri-dimensional matrix of methylcellulose and the addition of TLR9 agonists further increased this proliferative response. This ex vivo model of BCR stimulation with T-derived cytokines is a relevant and efficient model for functional studies of CLL as well as lymphoproliferative malignancies. Like in most mature lymphoproliferative malignancies, an antigenic stimulation is believed to drive the leukemo-genic process in chronic lymphocytic leukemia (CLL) 1-3. A restricted use of IGHV genes and the existence of ste-reotypic B cell receptor (BCR) on CLL cells 4-6 provides evidence in favor of antigenic stimulation where different microbial antigens, as well as auto-antigens, have been suspected as actors of this chronic stimulation 7. In addition , a chronic BCR self-activation has been shown in subtypes of CLL cells 8. Moreover, several signaling aberrations have been described downstream of the BCR, notably in aggressive CLL with unmutated IGHV (UM-CLL), in which the expression of ZAP70 reinforces BCR responsiveness 9-12. BCR activation, which is essential for the physiological development of lymphocytes 13 would also be indispensable for the survival and proliferation of CLL cells in vivo 2. Accordingly, withdrawal of this stimulation is believed to be responsible for the rapid spontaneous apoptosis of CLL cells ex vivo 14. The cellular consequences of this BCR activation has been extensively studied an

    Multi-OMICS analyses unveil STAT1 as a potential modifier gene in mevalonate kinase deficiency

    No full text
    International audienceObjectives The objective of the present study was to explain why two siblings carrying both the same homozygous pathogenic mutation for the autoinflammatory disease hyper IgD syndrome, show opposite phenotypes, that is, the first being asymptomatic, the second presenting all classical characteristics of the disease.Methods Where single omics (mainly exome) analysis fails to identify culprit genes/mutations in human complex diseases, multiomics analyses may provide solutions, although this has been seldom used in a clinical setting. Here we combine exome, transcriptome and proteome analyses to decipher at a molecular level, the phenotypic differences between the two siblings.Results This multiomics approach led to the identification of a single gene—STAT1—which harboured a rare missense variant and showed a significant overexpression of both mRNA and protein in the symptomatic versus the asymptomatic sister. This variant was shown to be of gain of function nature, involved in an increased activation of the Janus kinase/signal transducer and activator of transcription signalling (JAK/STAT) pathway, known to play a critical role in inflammatory diseases and for which specific biotherapies presently exist. Pathway analyses based on information from differentially expressed transcripts and proteins confirmed the central role of STAT1 in the proposed regulatory network leading to an increased inflammatory phenotype in the symptomatic sibling.Conclusions This study demonstrates the power of a multiomics approach to uncover potential clinically actionable targets for a personalised therapy. In more general terms, we provide a proteogenomics analysis pipeline that takes advantage of subject-specific genomic and transcriptomic information to improve protein identification and hence advance individualised medicine.This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

    Temporal multiomic modeling reveals a B-cell receptor proliferative program in chronic lymphocytic leukemia

    Get PDF
    International audienceAbstract B-cell receptor (BCR) signaling is crucial for the pathophysiology of most mature B-cell lymphomas/leukemias and has emerged as a therapeutic target whose effectiveness remains limited by the occurrence of mutations. Therefore, deciphering the cellular program activated downstream this pathway has become of paramount importance for the development of innovative therapies. Using an original ex vivo model of BCR-induced proliferation of chronic lymphocytic leukemia cells, we generated 108 temporal transcriptional and proteomic profiles from 1 h up to 4 days after BCR activation. This dataset revealed a structured temporal response composed of 13,065 transcripts and 4027 proteins, comprising a leukemic proliferative signature consisting of 430 genes and 374 proteins. Mathematical modeling of this complex cellular response further highlighted a transcriptional network driven by 14 early genes linked to proteins involved in cell proliferation. This group includes expected genes (EGR1/2, NF-kB) and genes involved in NF-kB signaling modulation (TANK, ROHF) and immune evasion (KMO, IL4I1) that have not yet been associated with leukemic cells proliferation. Our study unveils the BCR-activated proliferative genetic program in primary leukemic cells. This approach combining temporal measurements with modeling allows identifying new putative targets for innovative therapy of lymphoid malignancies and also cancers dependent on ligand–receptor interactions

    Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort

    No full text
    International audienceThe etiopathogenesis of critical COVID-19 remains unknown. Indeed given major confounding factors (age and comorbidities), true drivers of this condition have remained elusive. Here, we employ an unprecedented multi-omics analysis, combined with artificial intelligence, in a young patient cohort where major comorbidities have been excluded at the onset. Here, we established a three-tier cohort of individuals younger than 50 years without major comorbidities. These included 47 “critical” (in the ICU under mechanical ventilation) and 25 “non-critical” (in a non-critical care ward) COVID-19 patients as well as 22 healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and blood mononuclear cells proteomics, cytokine profiling and high-throughput immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing and structural causal modeling led to key findings. Critical patients were characterized by exacerbated inflammation, perturbed lymphoid/myeloid compartments, coagulation and viral cell biology. Within a unique gene signature that differentiated critical from non-critical patients, several driver genes promoted critical COVID-19 among which the upregulated metalloprotease ADAM9 was key. This gene signature was supported in a second independent cohort of 81 critical and 73 recovered COVID-19 patients, as were ADAM9 transcripts, soluble form and proteolytic activity. Ex vivo ADAM9 inhibition affected SARS-CoV-2 uptake and replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, COVID-19 cohort, we provide the landscape of biological perturbations in vivo where a unique gene signature differentiated critical from non-critical patients. The key driver, ADAM9, interfered with SARS-CoV-2 biology. A repositioning strategy for anti-ADAM9 therapeutic is feasible
    corecore