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Abstract
B-cell receptor (BCR) signaling is crucial for the pathophysiology of most mature B-cell lymphomas/leukemias and has emerged
as a therapeutic target whose effectiveness remains limited by the occurrence of mutations. Therefore, deciphering the cellular
program activated downstream this pathway has become of paramount importance for the development of innovative therapies.
Using an original ex vivo model of BCR-induced proliferation of chronic lymphocytic leukemia cells, we generated 108
temporal transcriptional and proteomic profiles from 1 h up to 4 days after BCR activation. This dataset revealed a structured
temporal response composed of 13,065 transcripts and 4027 proteins, comprising a leukemic proliferative signature consisting of
430 genes and 374 proteins. Mathematical modeling of this complex cellular response further highlighted a transcriptional
network driven by 14 early genes linked to proteins involved in cell proliferation. This group includes expected genes (EGR1/2,
NF-kB) and genes involved in NF-kB signaling modulation (TANK, ROHF) and immune evasion (KMO, IL4I1) that have not
yet been associated with leukemic cells proliferation. Our study unveils the BCR-activated proliferative genetic program in
primary leukemic cells. This approach combining temporal measurements with modeling allows identifying new putative targets
for innovative therapy of lymphoid malignancies and also cancers dependent on ligand–receptor interactions.
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Introduction

In B-cell lymphomas and leukemias such as marginal zone
lymphoma and chronic lymphocytic leukemia (CLL), chronic
antigenic activation of the B-cell antigen receptor (BCR)
sustains aberrant lymphocyte behavior and uncontrolled
monoclonal proliferation [1]. In physiological condition,
BCR-mediated cell activation is crucial for proliferation
and differentiation of lymphoid progenitors [2], as well as
for recognition of pathogen-derived antigens by mature
B lymphocytes. By contrast in CLL, BCR-mediated lym-
phocyte activation by various antigens [3], reinforced by
microenvironmental factors [4], triggers aberrant cell pro-
liferation in CLL’s proliferation centers [5]. The exploration
of pathways that transfer information from BCR engagement
to the nucleus revealed signaling aberrations that are rein-
forced by ectopic expression of the protein kinase ZAP70 in
the most aggressive forms of CLL [6]. The use of specific
inhibitors targeting the tumor cell survival dependency on key
signaling proteins (BTK, Pi3K) [7] has proven its efficacy in
clinics, however mutations in elements of these pathways
ultimately lead to tumor resistance and escape. Thus, the need
for alternative therapeutic approaches requires identifying
novel targets. The genetic program downstream the BCR
signaling cascades, namely the resulting sequential and
concerted expression of multiple genes and proteins, is a
promising candidate, but it still remains poorly understood.

Ex vivo models of BCR stimulation in patients’ primary
CLL cells [5, 8–10] have been developed to decipher these
downstream genetic programs. However, transcriptional
responses analyzed at sparse time points after BCR engage-
ment have yielded only limited insight into the complexity of
the cellular response. Moreover, it is worth noting that the
experimental conditions using isolated BCR activation in
these previous studies led to CLL lymphocyte apoptosis
instead of proliferation [11], which therefore missed the
malignant proliferative output of BCR engagement observed
in patients. Recently, we designed a novel ex vivo

experimental setting in which BCR engagement coupled to
minimal mandatory costimulating agents (CD40L, IL-4 and
IL-21) recapitulate the proliferation of primary CLL cells
[12].

In the present study, we used this improved ex vivo culture
model to generate a unique set of 108 combined transcrip-
tional and proteomic profiles over time after activation of
human primary CLL cells. As existing analysis methods of
such high dimensional datasets are limited in terms of preci-
sion to select the relevant actors of the genetic program, we
have developed a mathematical approach, validated on syn-
thetic datasets and supported by extensive simulations,
allowing the selection of critical actors of the CLL’s cell
response [13]. Furthermore, in order to characterize the
underlying structure of the concerted temporal interactions
between these actors, we refined our previously developed
regression method based on linear equations [14] which has
proved its capacity to handle high dimensional dataset while
taking into account the inherent sparsity of biological pro-
cesses [15, 16]. By using this mathematical modeling
approach applied to the 108 omics points of measurement, we
characterized the temporal cellular response of CLL cells to
BCR activation and we identified within this response a
nested and structured core proliferative program that could
sustain CLL cell leukemogenesis.

Materials and methods

Subjects, B-cell isolation, and culture conditions

B cells from peripheral blood were obtained from six untreated
CLL patients whose biological characterization, performed at
the University Hospitals of Strasbourg, included flow cyto-
metry analysis, cytogenetic with FISH, IGHV status, and TP53
mutational profile. All selected patients had a Matutes score of
5/5, unmutated IGHV, and wild-type TP53 (Table 1). This
study was approved by the ethic committee (CPP Est IV) of

Table 1 Clinical and biological characteristics of CLL patients.

Sample Sex Age at
diagnosis

IGHV
statusa

VH identity (%) ZAP70 statusb CD38c cytogenetic Binet stage Lymphocytes (G/L) BCR
responsed

CLL-P1 F 70 UM 100 Pos Neg tri12 A 18 P

CLL-P2 M 67 UM 99 Pos Neg tri12 A 22 P

CLL-P3 F 72 UM 100 Pos Pos del13q A 11 P

CLL-NP1 F 58 UM 100 Pos Neg 0 A 28 NP

CLL-NP2 M 61 UM 100 Pos Pos 0 A 56 NP

CLL-NP3 F 55 UM 99 Pos Neg del13q A 15 NP

a≥ 98% of IGHV identity for defining unmutated (UM) CLL cells [52].
b<7 threshold of T cells/CLL cells ratio of ZAP70 mean fluorescence intensity expression for defining ZAP70-positive CLL cells [53].
c≥30% threshold for defining CD38-positive CLL.
d>25% of cell division-dependent decrease in CFSE staining intensity measured by flow cytometry at day 6 after initial B-cell receptor activation
for defining proliferative (P) samples, and <20% for defining nonproliferative (NP) samples.
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Strasbourg University Hospitals and all patients gave written
informed consent. CLL B cells were negatively selected using
the RosetteSep B-cell enrichment cocktail (STEMCELL
Technologies, Vancouver, Canada) and density gradient cen-
trifugation. CLL cells (>96% CD19+/CD5+) were stained
with 0.5 μM carboxyfluorescein succinimidyl ester (CFSE)
(CellTrace, Thermo Fisher, Waltham, MA, USA) and were
stimulated with F(ab′)2 anti-human IgM (Jackson ImmunoR-
esearch, West Grove, PA, USA), CD40L (Enzo Life Sciences,
Villeurbanne, France), IL-4 (R&D Systems-Bio-Techne, Lille,
France), and IL-21 (Invitrogen, Maryland, USA) in soluble
medium as described previously [12]. Cell apoptosis, evaluated
using FITC-Annexin V and propidium iodide (apoptosis
detection kit, BD Biosciences, San Jose, CA, USA), 4 days
after BCR engagement by flow cytometry [12] (Cytomics
FC500, Beckman-Coulter, Fullerton, CA, USA) showed
86–98% live cells (median: 89%) in all samples. B-cell pro-
liferation, defined by cell division-dependent decrease in CFSE
staining intensity, was monitored 6 days after BCR engage-
ment by flow cytometry as previously described [12].

Transcriptomic analysis

Before BCR engagement (T0) and at eight time points after
activation (1 h, 1 h 30min, 3 h 30min, 6 h 30min, 12 h, 24 h,
48 h, 96 h), 4.106 cells were resuspended in 1 mL TRIzol
(Sigma-Aldrich, Saint-Louis, MO, USA). Total RNA was
purified using the RNeasy Mini kit (Qiagen, Hilden, Ger-
many). After ribosomal RNA depletion, the sequencing
library was prepared with the Ion Total RNA-seq kit v2
(Thermo Scientific) and the sequencing was performed on an
Ion Proton sequencer with the Ion PI Hi-Q Sequencing 200
Kit (Thermo Scientific). Reads was estimated with the pack-
age HTSeq [17] and the edgeR package [18] was used to
derive the reads per kilobase per million values. The tran-
scriptomic dataset is available in GEO (GSE130385).

Proteomic analysis

Before BCR stimulation (T0) and at eight time points after
stimulation (1 h, 2 h, 4 h, 7 h, 12 h, 24 h, 48 h, 96 h), 8.106

cells were resuspended in lysis buffer. Proteins were acet-
one precipitated and 10 µg of each sample were con-
centrated in a stacking gel band, in-gel reduced, alkylated,
and trypsin digested. NanoLC-MS/MS analyses of extracted
trypsic peptides were performed on a nanoAcquity UPLC
device (Waters Corporation) coupled to a Q-Exactive Plus
mass spectrometer (Thermo Scientific) operated in data
dependent acquisition mode. Label-free extracted ion
chromatogram-based quantification was performed using
MaxQuant software (version 1.5.5.1) [19]. The proteomics
dataset was deposited to the ProteomeXchange Consortium
via the PRIDE partner repository (PXD013573).

Gene expression and protein abundance analysis

Quality-based filtering of low expressed genes was per-
formed with the HTSFilter package [20]. The selection of
differentially expressed (DE) genes was made with the
glmLRT and the glmTreat functions of the edgeR package
[18]. Identification of temporal clusters of gene expression
was performed with the HTSCluster package [21]. After
quantile normalization, differential analysis of protein
abundancies was made using the peptide-level robust ridge
regression implemented in the MSqRob package [22].

Clustering and network reverse engineering

After selection according to their differential expression and
temporal profile, genes and proteins were divided into
temporal clusters for network reverse engineering. We had
to model N gene or protein actors for the reverse engi-
neering across T= 8 time points and for a number of P= 3
individuals (3 proliferative and 3 nonproliferative samples);
we denote by xnpt the observed value (gene expression or
protein abundancy) of the actor n for an individual p at a
time point t. For any actor of the network n among the total
N, the mathematical model was written

exnp: ¼
X

N

n0¼1

ωn0nFm n0ð Þm nð Þexn0p: þ εnp; 1 � p � P:

In this model, N is the total number of actors, k 7!mðkÞ
is the function that maps an actor to its time cluster, Fij is a
T square matrix that describes the action of the actors
belonging to cluster i on an actor that belongs to cluster j,
ωkl is the strength of the connection from actor k toward
actor l and εnp, and 1 � p � P is a T dimensional random
vector with zero mean and unit variance IT .

The code written for selection of actors and reverse
engineering the temporal cellular program in this study is
available as an R-package (https://fbertran.github.io/Pa
tterns/) [16].

Experimental procedure is summarized in Fig. S1 and
methods are detailed in Supplementary Information.

Results

Identification of a structured proliferative signature
in BCR stimulated CLL cells

Experimental design and multiomic dataset

To investigate the proliferative response of primary human
CLL cells after ex vivo BCR engagement, BCR stimulation
was performed on six untreated CLL samples of the most
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aggressive subgroup (IGHV unmutated), including three
samples that proliferate and three samples that do not pro-
liferate ex vivo within our culture conditions, the latter
being used as controls (Table 1). Transcriptional (RNA-seq)
and proteomic (mass spectrometry) responses of these CLL
samples were determined at T0 (before stimulation) and at
eight time points between 1 and 96 h after BCR-mediated
cell activation, generating a total of 108 points of mea-
surement (Fig. S1). A total of 23,348 transcripts and 4664
unique proteins were identified and quantified in the whole
dataset. After quality-based filtering, 13,065 transcripts and
4027 proteins expressed at least in one of the 108 samples
were retained for further analysis.

Unsupervised analysis identified a structured BCR response

The temporal transcriptional response was explored by
unsupervised multidimensional scaling which summarizes
within one dot on a two-dimensional graph the 500 most
expressed genes of each sample (Fig. 1A). This

representation revealed the temporality of the response on
the X axis and the proliferative status of the samples on the
Y axis. The dots corresponding to the proliferative and
nonproliferative samples were separated at T0 along the Y
axis and they all followed a structured evolution from T1 to
T8 along the X axis after BCR engagement. This analysis
emphasized the structured nature of the transcriptional BCR
response. In addition, hierarchical clustering analysis
strengthened this structured nature since it identified four
clusters, each made of consecutive time point of measure-
ment (Fig. 1B). Moreover, unsupervised temporal gene
expression analysis revealed clusters of genes exhibiting
structured temporal patterns of expression (Fig. S2A),
characterizing the transcriptional response to an exogenous
stress [23, 24].

In comparison, the unsupervised proteomic analysis
appeared less structured after BCR stimulation than the
transcriptional one, mainly at early time points (T1–T6).
However, a tendency for samples’ segregation with respect
of their proliferative response was observed at later time
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Fig. 1 Unsupervised statistical analysis of genes and proteins
expression. A Multidimensional scaling plot (MDS) analysis based on
the expression of the 500 most expressed genes for each pairwise
comparisons between the samples (among a total of 13,065 normalized
gene expressions), analyzed before (T0) and at eight time points
(T1–T8) after ex vivo B-cell antigen receptor activation for six chronic
lymphocytic leukemia (CLL) patients (three proliferative samples (P1-
3) and three control nonproliferative samples (NP1–3)). The MDS
graphs were constructed from the LogFC of the expressions/abun-
dances at different time points (T1–T8 versus T0). Each dot represents
the transcriptional profile of one CLL cell sample at a specific time
point. A color code represents the different time points. Successive
time points of a same cell sample are linked in the graph (red line for
proliferative samples and blue line for nonproliferative samples).

B Hierarchical clustering of all samples and all time points, based on
the expression of the 500 most expressed genes. Dendrograms from
clustering are added to the left side and to the top of the image. The
abbreviations of the times (T0–T8) represented in the different time
clusters observed on the hierarchical clustering are shown at the bot-
tom. C MDS analysis based on the expression of the 500 most
abundant proteins for each pairwise comparisons between the samples,
analyzed before and after ex vivo cell activation for the six CLL
patients. Each dot represents the proteome of one CLL cell sample at a
specific time point before (T0) and at eight time points (T1–T8) after
cell stimulation. A color code represents the different time points.
Successive time points of a same cell sample are linked in the graph.
D Hierarchical clustering of all samples and all time points, based on
the expression of the 500 most abundant proteins.
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points (T7 and T8) (Fig. 1C). This was further confirmed by
hierarchical clustering (Fig. 1D). In addition, the unsu-
pervised temporal protein expression analysis allowed
identification of clusters of proteins with structured patterns
of abundance modulation after stimulation (Fig. S2B).

The supervised analysis revealed a proliferative signature

Having evidenced the structured nature of the global CLL
cell response to BCR activation, we next characterized the
proliferative signature within this response, defined as the
genes and proteins DE in the proliferative samples com-
pared to the nonproliferative samples after BCR-mediated
CLL cells activation. To determine this signature, we first
established the list of genes and proteins significantly (FDR:
<1%) up- or downregulated in the stimulated (T1–T8)
versus unstimulated (T0) samples, defining a temporal sig-
nature (Fig. 2, Table S1). In the proliferative samples, 2782
DE genes and 1107 differentially abundant (DA) proteins

were assigned to this temporal signature, from which 421
were pairs of common symbols (gene and corresponding
protein). The nonproliferative CLL samples showed a less
important temporal signature with 1822 DE genes and 760
DA proteins, from which 223 were common symbols.
Secondly, we analyzed the list of genes and proteins sig-
nificantly up- or downregulated (FDR: <5%) in the pro-
liferative versus nonproliferative samples over the T1–T8
timecourse (Fig. 2, Table S1). This response signature
comprised 754 DE genes and 437 DA proteins from which
38 were common symbols. The intersection of the temporal
signature with the response signature of the proliferative
samples showed 430 DE genes and 374 DA proteins, cor-
responding to 779 unique symbols, characterizing the pro-
liferative signature after BCR engagement (Fig. 2,
Table S1).

Strong gene-to-protein correlation within the temporal
signature of the proliferative samples

As expected, we observed a delay between the transcrip-
tional and the translational response after cell stimulation.
Indeed, as many as 1133 genes (511 upregulated and 622
downregulated) were already DE in proliferative samples in
the 3 h after BCR stimulation (Fig. 3A), whereas the pro-
teomic modulation became obvious only after 24–48 h
(Fig. 3B). Moreover, analyzing the correlation rate between
gene expression and protein abundance in the set of 421
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genes/proteins pairs of the temporal signature revealed a
low median Pearson correlation at the initial time points
(38% at 6 h) which strikingly increased up to 82% at
48–96h (Fig. 4A). This was further confirmed by the heat
map of temporal expression of these 421 gene/protein pairs
(Fig. 4B) showing 90% of concordance between DE genes
and DA proteins expression, with a median translation delay
of 6 h.

Functions of proteins involved in the temporal signature

We next analyzed the function of the 1107 up- or down-
regulated proteins of the temporal signature in the pro-
liferative CLL cells. Biological process annotations (GO BP
terms) were collected in order to calculate the number of
proteins involved in each process during the timecourse
after cell activation. Albeit no significant proteomic
enrichment was noticed at early time point, an increase in
the number of upregulated proteins related to signaling,
transcriptional activity, and cell activation was observed
between 7 and 24 h (T4–T6), and a second upsurge of
upregulated proteins related to signaling, metabolism,
transcriptional processes, cell cycle regulation, DNA repli-
cation, nuclear division, and proliferation occurred from
days 2 to 4 (T7 and T8) (Fig. S3). The most represented
functions during this last period were related to cell cycle
regulation, DNA replication, nuclear division, and pro-
liferation, consistent with the onset of proliferation observed
in these cells after 4 days post BCR stimulation. Also, the

number of proteins participating in antigen processing and
peptide presentation was increased, consistent with BCR
stimulation in lymphoid cells.

Looking at GO BP for downregulated proteins revealed a
transiently decreased number of proteins related to signal-
ing, metabolism, and differentiation within 1 h (T1) after
cell activation, potentially reflecting a catabolism phenom-
enon (Fig. S3). The number of downregulated proteins
remained low until 24 h (T2–T6) and no particular BP
enrichment could be evidenced. However, a specific
enrichment in downregulated proteins related to signaling,
transcription, and cell cycle was observed at days 2–4 (T7
and T8), suggesting a negative control of these pathways at
later time points.

Altogether, this multiomic approach highlights the
structured nature of the temporal response to BCR stimu-
lation in primary CLL cells, characterized by an early
transcriptional component progressively relayed by a pro-
teomic component including elements related to the onset of
cell proliferation.

Mathematical modeling of the CLL proliferative
program

BCR response program inference in proliferative CLL cells

To model the cellular response displayed in the multiomic
dataset, we used a mathematical unsupervised reverse
engineering approach based on regression and system of
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Fig. 4 Correlation of gene expressions and protein abundancies. A
Correlation between gene (G) and corresponding protein (P) at each
time point after BCR engagement. The median value of the individual
Pearson gene/protein correlation is indicated and represented with a
color scale. B Heat map of the temporal expression/abundance of the

421 gene–protein pairs in the proliferating cells. Each line represents
the temporal expression of a gene and its corresponding protein. At
each time point, upregulated (T versus T0-positive Log2FC) or
downregulated (T versus T0-negative Log2FC) genes and proteins are
shown in red or blue, respectively.
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equations that already proved its efficiency in our previous
transcriptional study [15]. Temporal matrix of interactions
between genes and proteins (Fig. S4A–C) was estimated by
mean of penalized regression using a weighted variant of
stability selection algorithm [25] in order to retain the best
potential regulators of each gene or protein in the network
and to determine the timing of these interactions after cell
stimulation. To enhance the reverse engineering relevance
[26], we imposed biological constraints by favoring links
based on known transcriptional or protein–protein rela-
tionships implemented in the RegNetwork database [27].
The robustness of this inference has been ascertained by
cross validation [28] and the best result was retained by
linear regression estimation. Performances of the resulting
model, including sensitivity, precision, predictive positive
value, and F-score, were validated with simulated data and
compared to the performance of other algorithms
(Fig. S4D–F).

Inferring the formalized model with the temporal dataset
of proliferating CLL cells identified a regulatory network of
2167 genes and 1074 proteins representing 2846 unique
symbols (Table S2), among which 395 gene–protein pairs,
connected by 53,131 oriented links (Fig. S5). This network
exhibited a scale-free topology, where a limited number of
hub genes and proteins with multiple links (12 genes and 52

proteins exhibit ≥ 10 statistical links) drove the structure of
this cellular program. A detailed graphical representation
allowed reconstructing the timeline of this program (Fig. 5).
This temporal representation showed the DE genes and DA
proteins at each time point after cell stimulation and
revealed the dynamic propagation of the transcriptional and
proteomic expression waves after BCR stimulation in pro-
liferative CLL cells.

Deciphering a CLL proliferative program within the BCR
response

Considering the ability of CLL cells to generate a pro-
liferative response after BCR activation, we investigated
whether a subnetwork sustaining cell proliferation can be
identified within the above response network. To address
this, we identified within the proteomic dataset of pro-
liferating CLL cells the 267 proteins associated with the BP
terms “cell cycle regulation” and “proliferation,” designed
as “seeding proteins,” and their 243 connected neighbors
(gene or protein) in the network (Fig. S6A). Analyzing the
level of interconnection within this subgroup of proteins
and genes revealed a nested subnetwork comprising 388
elements including 173 of the seeding proteins linked to
215 neighbors (Fig. S6B, Table S2). Of note, among these

T1 T2 T3 T4

T5 T6 T7 T8

Gene
Protein

UP-regulated
UP-regulated (Proliferative signature)

Down-regulated
Down-regulated (Proliferative signature)

Fig. 5 Temporal propagation in the transcriptional and proteomic
network of 2167 genes and 1074 proteins induced after BCR sti-
mulation in proliferating cells. Temporal graphical representation of
statistical interactions (arrows) between genes (circle) and/or proteins
(square) across time in the proliferating CLL cells after B-cell receptor
stimulation. A color code represents genes and proteins differentially

(DE/DA T versus T0) upregulated (orange) or downregulated (blue) at
each time point after cell activation. Genes or proteins specifically up-
or downregulated in proliferating cells from the proliferative signature
(DE/DA T versus T0 and DE/DA P versus NP) are represented in dark
orange or dark blue, respectively. Graphical representation made with
Cytoscape software.
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388 genes and proteins elements, 31% belonged to the
“proliferative signature” defined above in the supervised
analysis (see also Fig. 2). This nested subnetwork could be
stratified into three layers of actors (Fig. S6C).

The first layer corresponds to the 173 seeding proteins
associated with cell cycle regulation or proliferation pro-
cesses. These proteins segregate within two groups
according to their chronological involvement during the
temporal response (Fig. 6). The first temporal group
comprises 18 proteins, downregulated at T1 after cell
activation. These proteins are mainly involved in tran-
scriptional repression (CNOT1, PA2G4), negative reg-
ulation of BCR signaling (INPP5D), or apoptotic process
(PRKDC). The second group is made of 155 proteins
whose changes occurred from T4 onward, just preceding
the initiation of cell proliferation. Within this group, 85
proteins are upregulated and 70 are downregulated pro-
teins. The upregulated proteins comprised factors
involved in G1/S transition or DNA replication (e.g.,
PCNA, CDK2, CUL1, RANBP1, MCM), whereas
downregulated ones show elements involved in signaling
downstream of the BCR (BLK, BTK, LCK, SYK),
potentially reflecting negative regulation mechanisms
after BCR engagement.

The second layer corresponds to the 71 genes present in
the subnetwork that encode proteins of the first layer
(Fig. 6). Remarkably, expression modulation of these
transcripts is highly correlated with the modulation of
abundance of their corresponding proteins with an offset
of 3–6 h.

The third layer of this subnetwork comprises 144 ele-
ments made of 50 genes and 94 proteins. At early time
points (T1 and T2), only 19 elements are present of which
14 genes exhibit a strong upregulation corresponding to the
very early transcriptional response to CLL cell activation.
These genes encode major transcription factors (TFs)
involved in the G0/G1 transition (EGR1, EGR2), in the
regulation of B-cell proliferation, and differentiation after
BCR activation (NFKB1, NFKB2) which are also involved
in lymphomagenesis [1]. Another genes within this
group encode molecules involved in signaling and NF-kB
modulation (TANK, RAS homolog family member F
(RHOF), syndecan-binding protein (SDCBP)), immune
evasion (KMO, IL4I1, SERPINB9), and cell adhesion
(ICAM1).

Remarkably, the mathematical modeling of the temporal
multiomic data allowed to trace back the sequential orga-
nization of the proliferative CLL response from the protein
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Fig. 6 Nested temporal proliferative program induced after BCR
stimulation in proliferating CLL cells. The proliferative temporal
subnetwork is represented in a time ordered graph, with genes (circle)
and proteins (square) represented at their first time point of differential
expression after cell activation (first time DE/DA T versus T0). Genes
and proteins up- or downregulated are represented in orange or blue,
respectively, and size of circles and squares are proportional to fold

changes (Log2FC T versus T0). The 173 seeding proteins involved in
“cell cycle” or “proliferation” are grouped in the upper part of the
graph (layer#1). The 71 genes coding some of these 173 proteins are
represented in the middle (layer#2). The 50 genes and 94 proteins also
included in this proliferative subnetwork are grouped in the lower part
of the graph (layer#3).
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effectors of cell proliferation at day 4 to the early molecular
events induced after BCR activation.

Important actors of the proliferative subnetwork are
missing in nonproliferative cells

We next investigated if this proliferative subnetwork com-
posed of TFs and hub proteins is specific to the CLL pro-
liferative program. For this purpose, we inferred with the
same approach the formalized model with the temporal
datasets of nonproliferative samples. This led to the iden-
tification of a regulatory network of 1399 genes and 750
proteins representing 1933 unique symbols, which were
connected by 17,332 oriented links (Table S2). Functional
analysis (BP terms) revealed 193 proteins associated with
“cell cycle regulation” or “proliferation” process. Among
them, 89% were shared with the seeding proteins displayed
in the proliferative samples and corresponds to the core
response program.

The search for neighbors of these 193 proteins revealed
131 elements with a nested subnetwork comprising 114
actors (37 genes and 77 proteins) (Fig. S7). Looking at this
subnetwork, we identified a lower number of links and hubs
in contrast to the proliferative samples (only 3 elements
show ≥5 statistical links in the nonproliferative subnetwork,
compared to 15 elements in the proliferative subnetwork).
In addition, the nonproliferative samples exhibited a
remarkable difference with the proliferative samples at the
early time points (T1 and T2) where only 2 of the 14 early
BCR-responsive genes were identified and those did not
include the TFs EGR1, EGR2, NFKB1, and NFKB2. This
observation emphasizes the critical relevance of these 14
early responsive genes in sustaining a BCR-mediated cell
proliferation program in CLL cells.

Discussion

The characterization of the cellular program sustaining CLL
cells proliferation after BCR engagement is a major step to
understand mature B-cell leukemogenesis with the ultimate
goal of developing innovative therapies targeting the
nuclear response to BCR activation instead of the cyto-
plasmic pathways that can be bypassed in resistant cancer
cells. However, studying the proliferative program in pri-
mary CLL cells is challenging because of the difficulty to
experimentally recapitulate cell proliferation ex vivo. Here,
we used the recently developed culture model based on
BCR engagement to induce CLL cell proliferation [12]
which allowed, by a temporal multiomic approach, deci-
phering the dynamic and structured nature of the pro-
liferative program triggered by BCR activation coupled to
costimulating agents. For this study, special attention was

paid to the similarity of the pathological characteristics
among patients (untreated, IGHV unmutated, Binet A/Rai
0/1 stage), which was retrospectively attested by the
absence of DE genes and DA proteins with an FDR > 5% at
T0 before BCR engagement.

Our large multiomic study highlights in human primary
cancer cells the coordination between the dynamic gene and
protein responses after exogenous cell stimulation. So far,
only few studies have addressed this relationship showing a
relatively weak gene-to-protein correlation of 30–60% in
yeast [29–31], murine fibroblasts, or human cancer cell lines
[32, 33]. Although we showed only a 38% correlation in the
first 6 h after BCR engagement, the ratio strikingly
increased up to 82% at the later time points in the pro-
liferative cells. This witnesses the progressive emergence
and propagation of the organization of transcription subse-
quently translated into a functional protein pattern triggered
by cell activation. In addition, we observed a similar median
delay of 3–6 h between gene and protein expression as in
yeast [29, 31]. This delay could explain the lack of temporal
structure revealed by the unsupervised multidimensional
scale analysis of protein abundance early after cell stimu-
lation in contrast to the structured response displayed at the
transcriptional level.

Remarkably, the proliferative subnetwork identified by
modeling the response of aggressive CLL lymphocytes to
BCR activation with costimulating agents comprised sev-
eral genes encoding important TFs downstream the BCR
signaling pathway, including genes previously identified in
common in the lymphocytic response to BCR alone in
healthy donors and patients with indolent or aggressive
CLL [15] (Table S2). This indicates that aggressive CLL
lymphocytes still retain similarities with healthy lympho-
cytes for their response to BCR, and is consistent with the
ability of the temporal multiomic modeling approach used
here to reconstruct the temporal and functional relationships
from the first TFs committed 1 h after BCR engagement to
proteins sustaining proliferation days after stimulation.
Moreover, if we retain the 374 proteins of the proliferative
signature (Fig. 2), instead of retaining the 267 proteins with
a GO term of proliferation as seeding proteins, the modeling
also highlights a subnetwork comprising 13 of these 14
overexpressed genes, which shows the robustness of this
approach.

Among the TFs identified here in the response of
aggressive CLL lymphocytes, EGR1 and EGR2 are zinc-
finger TFs downstream of the Ras/Raf/MAP kinase path-
way that is constitutively activated in various cancers and
blood malignancies [34]. EGR1 induces survival and a
proliferative response in quiescent cells and is a major
driver of mature B-cell lymphomas [35]. Other upregulated
genes belonging to the proliferative subnetwork include two
members of NF-kB family, NFKB1 (p50) responsible for
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transient response after cell stimulation through the cano-
nical NF-kB pathway and NFKB2 (p52) which is crucial for
cell differentiation through the noncanonical NF-kB path-
way. Via the transcriptional activation of several anti-
apoptotic genes, NF-kB members promote survival and
proliferation of various cell types. This pathway is also
crucial in B-cell leukemogenesis [1] and constitutive NF-kB
activation has been described in several B-cell neoplasms
[36]. Strikingly, the subnetwork also highlights genes
encoding signaling proteins potentially modulating NF-kB
activation, but whose implication in leukemia or lymphoma
leukemogenesis has not been explored yet. For example, the
TRAF family member-associated NF-KB activator (TANK)
modulates NF-kB activation through binding with TRAF
and TBK1 proteins [37, 38]. The RHOF, representative of
the Rho GTPase family implicated in tumorigenesis by
regulating cytoskeleton’s dynamic [39], has a potential role
in germinal center formation [40] and has recently been
involved in NF-kB regulation [41]. The SDCBP gene
encodes a PDZ domain-containing protein, involved in
exosome biogenesis [42] and Rho GTPase family regulation
[43], and participates in NF-KB activation in melanoma
[44]. The sorting nexin 8 gene, involved in endocytosis and
endosomal sorting, interacts with JAK1 and IKKβ and also
regulates NF-kB [45].

Furthermore, this subnetwork suggests a prominent
activation of immune-evasion mechanisms of CLL cells
after BCR and associated factors mediated cell prolifera-
tion activation. The genes KMO and IL4I1, respectively,
involved in tryptophan catabolism [46] and germinative
center formation [47] have T-cell proliferation inhibition
abilities [46, 48]. This subnetwork also highlights the role
of agents associated and acting in synergy with BCR
activation in the ex vivo stimulation model. Among the
388 actors of this subnetwork, ten genes (BCL2L1,
EGR2, FGR, ICAM1, PCNA, PRDX4, SERPINB9,
STAT3, TAP1, TXN) have also been reported in the
transcriptional signature of CD40L [49]. SERPINB9, a
serine protease, protects cells from granzyme B associated
apoptosis induced by cytotoxic T cells [50] and its
expression correlates with clinical outcome of several
lymphomas [51].

Noteworthy, the nonproliferative cells response did not
exhibit most of the above genes, validating the composition
of the core subnetwork of the BCR-mediated cell pro-
liferation. However, comparison of the 388 actors (genes or
proteins) of the proliferative subnetwork (Fig. 6) and the
114 actors of the nonproliferating subnetwork (Fig. S7)
shows 60 common actors (representing 52% of the total
nonproliferating actors and 15% of the proliferating sub-
network actors), constituting the core of the common
response of this group of lymphocytes of the aggressive
form of CLL.

In conclusion, using a large dataset of temporal tran-
scriptional and proteomic measurements coupled with
mathematical modeling, this study unveils the genetic pro-
gram downstream the signaling cascade activated by the
BCR engagement and triggering primary CLL cell pro-
liferation ex vivo. Noteworthy, this program organizes
around a limited number of genes and proteins whose
sequential commitment drives the cellular response leading
to proliferation days after cell activation. These hubs
represent potential targets for the development of novel
therapeutic strategies for the treatment of aggressive CLL.
Beyond CLL, such an approach could be explored in other
mature B and T antigen-driven malignancies and could also
be extended to other cancer types dependent on
ligand–receptor interactions, as for instance the hormone-
dependent cancers.
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Supplemental methods (Schleiss et al.) 

 
Source of reagents: 

Product Catalogue number Supplier 

CellTrace CFSE C34554 Invitrogen (Thermofisher) 

Unconjugated Goat F(AB')2 Anti Human IgM FC 109-006-129 Jackson ImmunoResearch 

MegaCD40L Protein ALX-522-110-C010 Enzo Life Sciences 

Recombinant Human IL-4 Protein 204-IL-010 R&D systems 

IL21 Recombinant Human Protein 10447063 Gibco (Fischer Scientific) 

CD19-PC7 (J3-119) IM3628 Beckman Coulter 

Mouse IgG1 -PC7 isotype control 737662 Beckman Coulter 

CD5 FITC (BL1a) A08932 Beckman Coulter 

IgG2a-FITC isotype control A12689 Beckman Coulter 

Annexin V FITC 556420 BD Biosciences 

propidium iodide  556463 BD Biosciences 

 
mRNA samples preparation 

Before BCR-mediated cell activation (T0), and at eight time points after activation (1h, 1h30, 3h30, 

6h30, 12h 24h, 48h, 96h), 4.106 cells were collected, washed and resuspended in 1mL TRIzol (Sigma-

Aldrich). Total RNA was isolated using chloroform and Phase Lock Gel tube (5 Prime) and was purified 

using the RNeasy Mini kit (Qiagen) according to the manufacturer's recommendation. RNA integrity 

was assessed with the Agilent total RNA Pico Kit on a 2100 Bioanalyzer instrument (Agilent 

Technologies). Ribosomal RNA was depleted with the Low Input RiboMinus™ Eukaryote System v2 kit 

(Thermo Fisher Scientific) following manufacturer's instructions.  

 

 

RNAseq analysis and data preprocessing 

The sequencing library was prepared with the Ion Total RNA-seq kit v2 (Thermo Fisher Scientific) 

according to the manufacturer's instructions. The libraries were loaded two by two at a concentration 

of 20 pM on an Ion PI Chip using the Ion Chef Instrument (Thermo Fisher Scientific). The sequencing 

was performed on an Ion Proton sequencer with the Ion PI Hi-Q Sequencing 200 Kit (Thermo Fisher 

Scientific). Raw sequencing data were preprocessed according to the manufacturer’s 

recommendations. Adapter sequences were removed and reads shorter than 18bp were excluded. 

Reads were then mapped against the human genome (Hg19) and a virtual reference transcriptome 

using TopHat2 1. Unmapped reads were mapped to the reference Hg19 using Bowtie2 in local mode 2. 
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The total reads (SAM format) was used to count reads with the default union-counting mode of the 

tool htseq-count of the Python package HTSeq 3 (GEO accession GSE130385). We used the edgeR 

package 4, to derive the reads per kilobase per million (rpkm) values from read counts and gene 

lengths. These rpkm values were used for differential analysis study and their Voom transformed 

values for model inference 5. Small Nucleolar RNA (snor, 370 entries) and the microRNAs (MIR*, 1 651 

entries) were filtered out. 

 

 

Proteomic samples preparation 

Before cell stimulation (T0), and at eight time points after stimulation (1h, 2h, 4h, 7h, 12h, 24h, 48h, 

96h), 8.106 cells were collected, washed and resuspended in 100µl of lysis buffer (Urea 8M, Thiourea 

2M, Chaps 4%, Dithiothreitol (DTT) 1%, Triton 10%, TLCK 0,05%, protease inhibitors). After 

centrifugation (5min, 8000g), 6 volumes of glacial acetone were added to the supernatant and samples 

were incubated overnight at -20°C. The proteins were pelleted and 10 µg of each sample were 

resuspended in loading buffer (2% SDS, 0,1M DTT, 10% glycerol, 62.5 mM Tris pH 6.8) and concentrated 

in one stacking-gel band using a 4% SDS-PAGE gel. The gels were fixed with 45% methanol/3% acetic 

acid and stained with colloidal Silver Blue. Each band was excised and cut in four pieces prior to in-gel 

digestion. The gel pieces were washed four times with 100 μL of 75% acetonitrile (ACN) and 25% 

ammonium bicarbonate buffer (NH4HCO3) at 25 mM and dehydrated with 50 μL of ACN. The cysteine 

residues were reduced by adding 10 mM DTT for 30 min at 60°C and 30 min at room temperature, and 

alkylated by adding 55 mM iodoacetamide (IAA) for 20 min in the dark. The bands were then washed 

three times by adding 50 μL of 25 mM NH4HCO3 and 50 μL of ACN. Gel pieces were dehydrated twice 

with 50 μL ACN prior to enzymatic digestion. Proteins were cleaved in an adequate volume to cover 

the gel pieces with a modified porcine trypsin (Promega) solution at a 1:50 w/w enzyme:protein ratio. 

Digestion was performed overnight at 37°C. Tryptic peptides were extracted twice under agitation, 

first with 40 μL of 60% ACN in 0.1% formic acid (FA) for 1 h and then with 30 µL of 100% ACN for 40 

min. The collected extracts were pooled, the excess of ACN was vacuum dried, and the samples were 

resolubilized with 25 µL of H2O/ACN/FA (98/2/0.1 v/v/v) and sonicated in ice during 10 min prior to 

nanoLC-MS/MS analysis. 

 

 

Mass spectrometry analysis and data preprocessing 

NanoLC-MS/MS analyses were performed on a nanoAcquity UPLC device (Waters Corporation) 

coupled to a Q-Exactive Plus mass spectrometer (Thermo Scientific). Peptide separation was 
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performed on an ACQUITY UPLC BEH130 C18 column (250 mm × 75 μm with 1.7 μm diameter particles) 

and a Symmetry C18 precolumn (20 mm × 180 μm with 5 μm diameter particles, Waters). The solvent 

system consisted of 0.1% FA in water (solvent A) and 0.1% FA in ACN (solvent B). The samples were 

loaded into the enrichment column over 3 min at 5 μL/min with 99% of solvent A and 1% of solvent B. 

Peptides were eluted at 450 nL/min with the following gradient of solvent B: from 1 to 35% over 120 

min and 35 to 90% over 1 min. The MS capillary voltage was set to 1.8 kV at 250°C. The system was 

operated in Data-Dependent Acquisition (DDA) mode with automatic switching between MS (50 

ms/scan over a 300–1800 m/z range with R = 70 000) and MS/MS (100 ms/scan over a 200–2000 m/z 

range with R = 17 500) modes. The ten most abundant ions (intensity threshold 2 x 105) were selected 

on each MS spectrum for further isolation and higher energy collision dissociation (HCD) 

fragmentation, excluding unassigned and monocharged ions. The dynamic exclusion time was set to 

60 s. Raw data collected during nanoLC-MS/MS were processed using MaxQuant (version 1.5.5.1) 6. 

Peaks were assigned with the Andromeda search engine with trypsin/P specificity. The database used 

for the searches contained all human entries extracted from UniProtKB-SwissProt including canonical 

sequences and isoforms (2016, sept. ; 42 145 entries). The minimum peptide length required was 

seven amino acids and a maximum of one trypsin missed cleavage was allowed. The precursor mass 

tolerance was set to 20 ppm for the first search and 4.5 ppm for the main search. The fragment ion 

mass tolerance was set to 20 ppm. Methionine oxidation was set as a variable modification and 

carbamidomethylation of cysteines as a fixed modification. The maximum false discovery rate was 1% 

at peptide and protein levels with the use of a decoy strategy. The “match between runs” option was 

used. The dataset was made of 53 measurements of 50 503 peptides (6 subjects x 9 time points, 

outlying sample CLL-NP3_24h was excluded) and we used the data preprocessing pipeline 

recommended by the MSqRob package 7. The data were log2 transformed and we applied quantile 

normalization. We filtered peptides that could be assessed as contaminant and we removed proteins 

that were only identified by peptides carrying one or more modification sites. Gene symbols were 

retrieved for all protein groups, whenever possible, from the UniProt database (The UniProt 

Consortium 2017 8, using the proteins API 9. The complete proteomics dataset was deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013573. 

 

 

Gene expression Analysis 

Selection of differentially expressed (DE) genes. The TREAT test conducts genewise statistical tests for 

a given coefficient or contrast relative to a specified fold-change threshold. First, separate group 

analysis was performed to search for genes significantly DE, with glmLRT or glmTreat, at the 5% or 1% 
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FDR level at a given time (Ti, i>0) versus control (T0=0) in each of the proliferative (P) and non-

proliferative (NP) groups (temporal signature). Second, we searched for DE genes between each 

groups (response signature). glmLRT and glmTreat (whenever possible) detect genes that respond 

differently in the NP and P groups at a given time or over all time points (with respect to control time 

values).  

Cluster selections of genes. We performed a single run of HTSCluster looking up to K = 1, …, 35  clusters, 

using the Trimmed Means of M-values (TMM) normalization 10, and the splitting small-EM strategy, an 

approach similar to that described by Papastamoulis 11. In HTSCluster, model selection may be 

performed using the DDSE calibration for slope heuristics, Djump calibration for slope heuristics, 

Bayesian Information Criterion, and Integrated Completed Likelihood criterion. When the slope 

heuristics approach may be applied, we used the capushe package 12, to provide diagnostic plots for 

this slope heuristics in order to ensure that sufficiently complex models have been considered. 

 

 

Proteomic Data Analysis 

Choosing the FDR procedure. According to calibration plots, p-values distributions were not standard 

and hence the use of the cp4p package 13 to perform more involved FDR correction was required. 

Almost all the choices of the FDR control method provided by the cp4p package led to the same 

numbers of DA proteins. We selected the two-stage Benjamini and Hochberg procedure 14 because it 

can limit the FDR to a given level and was set to 0.05 for the DA analysis. The differential analysis was 

made using the test.contrast_adjust function of the MSqRob package 7. MSqRob implements a 

peptide-level robust ridge regression that improves estimation, sensitivity, and specificity in data-

dependent quantitative label-free shotgun proteomics. 

 

 

Gene and protein selection for network reverse engineering 

To merge the gene and protein datasets, we matched the gene and protein groups names. Protein 

groups that featured multiple gene names were manually curated. The selection of the actors of the 

networks was made in three steps: 

- Base selection = Treat 1% FDR DE genes for any of the 24 tests and 1% FDR DA protein groups for 

any of the 24 tests. Those 24 tests are the 8 Ti vs T0 tests for each of the two groups P, NP and the 

between group NP v P analysis. 

- Enrichment 1 = NP v P 5% DE genes or DA protein groups for any of the 24 tests (without FDR 

correction for the 24 tests) 
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- Enrichment 2 = Based on temporal profiles expected after an exogeneous cell activation. 

More precisely, a gene could be selected by the profile based enrichment if Its DE ranking is less than 

200 and it features a single peak at a single time, or a single peak for two consecutive times, or a single 

peak for three consecutive times. 

The DE ranking of gene, is its ranking among the other genes with respect to its p-value at a given test. 

A gene with a DE ranking equal to 1 features the smallest p-value for the test whereas a gene with the 

highest DE ranking possible, features the largest p-value for the test. We chose 200, a rather high value, 

as the max DE ranking value in order to perform a large profile based enrichment of the selection. The 

number of unique gene ID in the final selection is 5 733. Obviously, genes expressions or proteins 

abundancies must not be constant (within a given group either NP or P) to be included in the reverse 

engineering algorithm since we need to assess their predictive value on other gene expressions or 

protein abundancies. As a consequence, we had to filter out 125 protein abundancies. Any of the 

proteins abundancies that were removed were constant in both of the groups. 

 

 

Clustering of genes and proteins  

We first adjusted the range of the gene expressions and of the protein abundancies in order to improve 

the similarities between the genes and proteins groups values. To rescale abundancies’ distributions 

to the ranges of the expressions’ distributions, we used a multiplying factor: the 50% Trimmed Mean 

of the ratios of ranges of the abundancies divided by the range of the expressions for every Gene Name 

for which those two values were available.  

 
To cluster genes and protein  we applied Fuzzy c−means clustering (FCM) 15, 16 using the Euclidean 

distance. 

 

1. Methodology of the clustering. 

We used two runs of the FCM methodology, detailed in section 2 below, to get the 62 final clusters of 

the genes (41 clusters) and proteins (21 clusters) datasets. 

First, using FCM, we clustered the subset of genes and proteins, for which both gene expressions and 

proteins abundances were measured, according to those genes expressions and those protein 

abundancies, which resulted in 21 clusters. We directly used those 21 clusters to cluster the proteins, 

since gene expressions were missing for only a few proteins.  

Yet, there were hundreds of genes expressions without protein abundance data. To tackle this issue, 

we performed an additional FCM run and clustered all the genes expressions into 20 clusters 

using only the gene expression data.  
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For the genes that may be clustered in the first run (genes and proteins data) and in the second run 

(genes without proteins data), we retained the clustered found using both gene and protein data since 

it is likely to be more accurate. Hence, the genes were split into 21+20 clusters and the proteins into 

the 21 very same clusters as the 21 genes clusters. In addition, this type of clustering was likely to help 

to simplify the upcoming network inference since it required to model how genes and proteins clusters 

interact. 

 

2. Methodology for an FCM. 

Even if Mfuzz package, that implements FCM, was first developed to cluster microarray data, the 

algorithms of the Mfuzz package, as claimed by its authors on their 

webpage (http://mfuzz.sysbiolab.eu), can also be applied to other types of data such as proteins 

abundances or RNAseq datasets. 

We chose to perform the FCM cluster analysis using the Euclidean distance. As result, the expression 

values of genes were standardized to have a mean value of zero and a standard deviation of one. This 

ensures that vectors of genes with similar changes in expression are close in Euclidean space, as 

recommended by Futschik and colleagues 15. To perform FCM, two parameters have to be specified: 

the number of clusters c and the FCM parameter m. 

The FCM parameter m was estimated using the m estimate function of the Mfuzz package that 

implements the algorithm from Schwammle et al. 17. To determine the number of clusters, we used 

the minimum centroid distance as a cluster validity index since for an optimal cluster number, we may 

see a ‘drop’ of minimum centroid distance when plotted versus a range of cluster number and a slower 

decrease of the minimum centroid distance for higher cluster number. Again, more information and 

some examples can be found in the study of Schwammle and Jensen (2010).  

 

Network reverse engineering 

Then we designed groups for both the NP and P network inferences in the following way: 

1. For the 3 707 gene expression data of the gene ID with gene expression data only, we used the 

previously derived 20 clusters, numbered from 1 to 20. The minimum size of a group is 68. 

2. For the 2 015 gene expression data of the gene ID with both gene expression and protein 

abundancies data, we used the previously derived 21 clusters, numbered from 21 to 41. The minimum 

size of a group is 44. 

3. For the 2 025 protein abundancies data of the gene ID with protein abundancies data (and for 2,015 

of them gene expression data), we used the previously derived 21 clusters, numbered from 42 to 62. 
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We had to infer, using random forest imputation and the mice R package 18 the group membership 

values for the 10 proteins that only featured protein abundancies. The minimum size of a group is 44. 

We will denote by G2P the action of a cluster of genes expressions on a cluster of protein abundancies, 

G2G the action of a cluster of genes expressions on a cluster of genes expressions, P2G the action of a 

cluster of protein abundancies on a cluster of genes expressions and P2P the action of a cluster of 

protein abundancies on a cluster of protein abundancies (Supplementary Fig. 4A). 

For any given cluster 𝑖 among those 62 clusters, we set, for all of them and by analyzing the time course 

profiles of the cluster members, the first timepoint, denoted by 𝑂௜, for which it might begin to have an 

effect on the other actors of the networks.  

In order to take into account relevant biological knowledge, we designed a weighted inference. The 

algorithm aims to reveal the links between the actors of the network (genes or proteins). A weight can 

favor or disfavor such a link. It ranges from 0, always in, to +∞, always exclude; a unit weight being 

neutral. 

Information on regulators, targets, as well as confidence (High, Low, Medium) and evidence 

(Experimental, Predicted), are provided by RegNetwork (341 207 links) 19. The weight values were 

modulated according to the actual confidence and evidence values. We chose several thresholds for 

the weights and matched them with the uncertainty of the biological knowledge of a given action of 

an actor of the network on another: 

always=0<+++<++<+<1<-<+Inf=exclude 

 

The weights also take several biological or modelling assumptions into account: 

- If both gene expressions and protein abundancies were measured for a given gene ID, only the 

protein abundancy measurement must be used to infer its effect in the network. 

- No actions within a cluster. The members of a given cluster (of genes or proteins) cannot be used 

to infer the expressions of the abundancies of other members of the same cluster. It makes since 

members of the same cluster share similar time profiles. 

- No loop action (either for a gene on itself or for a protein on itself) 

Such a weight is view as a penalty factor in the penalized regression model: it is a number that 

multiplies the lambda value in the minimization problem to allow differential shrinkage (20, equation 1 

p.3). If equal to 0, it implies no shrinkage, and that variable is always included in the model. Default is 

1 for all variables. Infinity means that the variable is excluded from the model. Note that the weights 

are rescaled to sum to the number of variables. 

The core of the statistical model combined a 𝐹 matrix (a square matrix of size 8*62=496) that models 

the time dependent effects between clusters and a ω matrix (a square matrix of size 7 747) that 

captures a non-time dependent link (the possibility of an action) between the actors of the network. 
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More precisely, a cell 𝐹௜௝  (itself a square matrix of size T) of the 𝐹 matrix models the effect of cluster 𝑖 

on cluster 𝑗. Notice that if an actor of the network 𝑛଴ belongs to cluster 𝑖 and an actor of the network 

n belongs to cluster 𝑗, the matrix 𝐹௜௝  allows the link between the actors 𝑛଴ and 𝑛 to be time dependent. 

To enforce temporal causality, we used the two following time constraints: 

- A cluster 𝑖 cannot affect another cluster 𝑗, if 𝐶௜ ≥ 𝐶௝: this ensures that a cluster 𝑖 cannot affect a 

cluster 𝑗 if the first action time 𝐶௝ of cluster 𝑗 precedes the first action time of cluster 𝑖. Hence, if 

𝐶௜ ≥ 𝐶௝, then the 𝐹௜௝cell of the 𝐹 matrices is set to 0 (𝐹௜௝=0). Supplementary Fig. 4 B-C shows 

nonzero 𝐹௜௝  matrices for the P and NP network reverse engineering. These are the same for these 

data but could have happened to be different. 

- If 𝐶௜ < 𝐶௝, then the 𝐹௜௝  matrix is a lower triangular square matrix of size T. Its shape is chosen so 

that the measurement of an actor of the network at time 𝑡௞ can influence another the 

measurement of an actor of the network at time 𝑡௞బ
 if and only if 𝑘 < 𝑘଴ (Supplementary Fig. 4C). 

The only exception being the G2P case of the action of a cluster of genes 𝑖 for which we also 

measured the proteins (21 ≤ 𝑖 ≤ 41) on its protein cluster (the cluster of the proteins abundancies 

with the same Gene ID numbered 𝑖 + 21). In that case we choose an almost diagonal matrix 

(Supplementary Fig. 4B). Been able to easily switch between those matrices is one of the main 

reasons that accounts for creating the same clusters for both genes and proteins when possible. 

Hence, contrary to what was previously assumed in Vallat et al. 2013 and Jung et al. 2014 21, 22, the size 

of the 𝐹௜௝  was increased in order to cope with the G2P actions that are modelled at the same timepoint 

and the sub-diagonals and the diagonal of matrices F were no longer supposed to be constant since 

the experimental timepoints were no longer equally distributed throughout the experiment (the times 

differences range from 30 minutes to 2 days). A constant value on a subdiagonal of the 𝐹௜௝  matrix 

would mean that the intensity of the effect of an actor on another one only depends on the time lag 

between the measurements. Nevertheless, we assumed that for similar time steps, the interactions 

should depend only on time index differences (i.e. time lag) rather than absolute time index. Hence 

some parts of the diagonal and sub-diagonal of the 𝐹௜௝  matrices are constant. 

We have selected 𝑁 = 7 747 actors for the reverse engineering across 𝑇 = 8 timepoints and for 𝑃 =

3 individuals; we denote by 𝑥௡௣௧ observed value (gene expression of protein abundancy) of the actor 

𝑛 for an individual 𝑝 at timepoint 𝑡. For any actor of the network 𝑛 among the 𝑁 = 7 747 ones, the 

mathematical model was written:  

𝒙෥𝒏𝒑. = ෍ 𝜔௡ᇱ௡𝑭𝒎൫𝒏ᇲ൯𝒎(𝒏)𝒙෥𝒏ᇲ𝒑.

ே

௡ᇲୀଵ

+ 𝜺𝒏𝒑, 1 ≤ 𝑝 ≤ 𝑃. 

In this model,  𝑁 is the total number of actors, 𝑘 ↦  𝑚(𝑘) is the function that maps an actor to its 

time-cluster, 𝑭𝒊𝒋 is a 𝑇 square matrix that describes the action of the actors belonging to cluster 𝑖 on 
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an actor that belongs to cluster 𝑗, 𝜔௞௟ is the strength of the connection from actor k towards actor l 

and 𝜺𝒏𝒑, 1 ≤ 𝑝 ≤ 𝑃 is a 𝑇 dimensional random vector with zero mean and unit variance 𝑰𝑻. So, in this 

model 𝒙෥𝒏.. is the regulated actor and 𝑥෤௡బ.., 1 ≤ 𝑛଴ ≠ 𝑛 ≤ 7 747, are the regulators (𝑛଴ ≠ 𝑛 to not 

allow self-regulation). It is known that genes or proteins tend to be regulated by few genes or proteins 

whereas a given gene or protein can regulate many other genes or proteins. Hence we chose to carry 

out the fitting of the model using penalized regression. In addition, in order to select only the more 

relevant and stable regulators for given actor, we used a weighted variant of stability selection 23 

combined with nonnegative least squares and a coordinate ascent approach by alternatively supposing 

the 𝑭𝒊𝒋 matrices known or the 𝝎 matrix known. To get a more robust result, the estimation of the 𝑭෡𝒊𝒋 

matrices was done several times by ‘leave one subject out’ cross-validation. Furthermore, to avoid 

computational issues, after each step of the algorithm the new 𝑭𝒊𝒋 matrices were chosen as a linear 

combination between the 𝑭𝒊𝒋 matrices estimated at the end of the preceding step and the 𝑭𝒊𝒋 matrices 

that were estimated at this step using non negative least squares. The result of the estimation process 

was threefold: (1) a connectivity network described by the nonzero elements of 𝝎ෝ , if 𝜔ෝ௡ᇱ௡ ≠ 0 means 

that an action of 𝑛′ on 𝑛 was detected, (2) any 𝑭෡𝒊𝒋 matrix catches if there is an effect of cluster 𝑖 on 

cluster 𝑗 and at which time(s) those effects arise, and (3) the evolution through time of the action of 

actor 𝑛′ on actor 𝑛 can be derived by computing the product 𝜔ෝ௡ᇱ௡𝑭෡𝒎൫𝒏ᇲ൯𝒎(𝒏) and by combining the 𝝎 

and 𝑭𝒊𝒋 (code available in the Patterns R package 24). 

 

 

Data simulation and algorithm validation 

To simulate the measurements of the actors based on a regulatory network, we designed an algorithm 

that is inspired by the preferential attachment 25. Then, we adapted it to temporal nested networks. 

We then used our cascade network based model to make some simulations, using Laplace laws to set 

the values of the measurements of the actors at the first time point. 

The results of simulated data were then compared with the performances of our previous Cascade 

algorithm (Cascade package 21, 22), its non-weighted, properly weighted and incorrectly weighted Lasso-

versions (Patterns package  24) and with the performances of a non-weighted and weighted Stability 

Selection-version algorithm 26 (Supplementary Fig. 4 D-F). We also compared these results with the 

performances of a weighted and non-weighted version of the SelectBoost algorithm (SelectBoost 

Package, results available online on the package website 27). These results showed that correctly 

weighted models achieved a higher sensibility, PPV and F-score than the other ones (especially 

Cascade) and demonstrated the performances of this modelling approach. 

 



 
 

10 

References supplemental methods 
 
 
1. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate 

alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 
Genome Biol 2013 Apr 25; 14(4): R36. 

 
2. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 

2012 Mar 4; 9(4): 357-359. 
 
3. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput 

sequencing data. Bioinformatics 2015 Jan 15; 31(2): 166-169. 
 
4. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-

Seq experiments with respect to biological variation. Nucleic Acids Res 2012 May; 
40(10): 4288-4297. 

 
5. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model 

analysis tools for RNA-seq read counts. Genome Biol 2014 Feb 3; 15(2): R29. 
 
6. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-

free quantification by delayed normalization and maximal peptide ratio extraction, 
termed MaxLFQ. Mol Cell Proteomics 2014 Sep; 13(9): 2513-2526. 

 
7. Goeminne LJ, Gevaert K, Clement L. Peptide-level Robust Ridge Regression Improves 

Estimation, Sensitivity, and Specificity in Data-dependent Quantitative Label-free 
Shotgun Proteomics. Mol Cell Proteomics 2016 Feb; 15(2): 657-668. 

 
8. Chen C, Huang H, Wu CH. Protein Bioinformatics Databases and Resources. Methods 

Mol Biol 2017; 1558: 3-39. 
 
9. Nightingale A, Antunes R, Alpi E, Bursteinas B, Gonzales L, Liu W, et al. The Proteins 

API: accessing key integrated protein and genome information. Nucleic Acids Res 2017 
Jul 3; 45(W1): W539-W544. 

 
10. Robinson MD, Oshlack A. A scaling normalization method for differential expression 

analysis of RNA-seq data. Genome Biol 2010; 11(3): R25. 
 
11. Papastamoulis P, Martin-Magniette ML, Maugis-Rabusseau C. On the estimation of 

mixtures of Poisson regression models with large number of components. 
Computational Statistics & Data Analysis 2016; 93: 97-106. 

 
12. Arlot S, Brault V, Baudry JP, Maugis C, Michel B. capushe: CAlibrating Penalities Using 

Slope HEuristics. version 1.1.1. R package 2016. 
 



 
 

11 

13. Giai Gianetto Q, Combes F, Ramus C, Bruley C, Coute Y, Burger T. Calibration plot for 
proteomics: A graphical tool to visually check the assumptions underlying FDR control 
in quantitative experiments. Proteomics 2016 Jan; 16(1): 29-32. 

 
14. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control 

the false dicovery rate. Biometrika 2006; 93(3): 491-507. 
 
15. Futschik ME, Carlisle B. Noise-robust soft clustering of gene expression time-course 

data. J Bioinform Comput Biol 2005 Aug; 3(4): 965-988. 
 
16. Kumar L, M EF. Mfuzz: a software package for soft clustering of microarray data. 

Bioinformation 2007 May 20; 2(1): 5-7. 
 
17. Schwammle V, Jensen ON. A simple and fast method to determine the parameters for 

fuzzy c-means cluster analysis. Bioinformatics 2010 Nov 15; 26(22): 2841-2848. 
 
18. Van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained 

Equations in R. Journal of Statistical Software 2011; 45(3): 1-67. 
 
19. Liu ZP, Wu C, Miao H, Wu H. RegNetwork: an integrated database of transcriptional 

and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 
2015; 2015. 

 
20. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models 

via coordinate descent. Journal of statistical software 2010; 33(1): 1. 
 
21. Vallat L, Kemper CA, Jung N, Maumy-Bertrand M, Bertrand F, Meyer N, et al. Reverse-

engineering the genetic circuitry of a cancer cell with predicted intervention in chronic 
lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United 
States of America 2013 Jan 8; 110(2): 459-464. 

 
22. Jung N, Bertrand F, Bahram S, Vallat L, Maumy-Bertrand M. Cascade: a R package to 

study, predict and simulate the diffusion of a signal through a temporal gene network. 
Bioinformatics 2014 Feb 15; 30(4): 571-573. 

 
23. Meinshausen N, Bühlmann P. Stability selection. Journal of the Royal Statistical Society: 

series B (Statistical methodology) 2010; 72(4): 417-473. 
 
24. Bertrand F, Maumy-Bertrand M. Patterns: patterned networks reverse engineering. R 

package 2019. 
 
25. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional 

organization. Nat Rev Genet 2004 Feb; 5(2): 101-113. 
 
26. Meinshausen N, Bühlmann P. Stability selection. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology) 2010; 72: 417-473. 
 



 
 

12 

27. Bertrand F, Maumy-Bertrand M, Jung N, Aouadi I. SelectBoost : a General Algorithm to 
Enhance the Performance of Variable Selection Methods in Correlated Datasets. 
version1.3.0. R package 2019. 

 
 
 



mRNA

CLL cells isolation and stimulation ex vivo

Proteins
Sample preparation

Sequencing

� rRNAdepletion
� Library

� Ion Proton (Thermo Fisher)

Data processing

� Reads alignment on HG19 
(Bowtie and TopHat)

� Transcripts annotation and assembly 
(Cufflinks package)

� Transcripts quantification 
(Cufflinks package)

� trypsicdigestion and extraction

Sample preparation

Statistical analysis

� EdgeR/  normalization TMM
� HTSFilter Independent filtering
� Differential Analysis(limma)

Statistical analysis

� Quantile normalization
� Peptide Æ Proteins groups transformation

� Differential Analysis(MSqRob)

Statistical Joint inference

Mass Spectrometry

Data processing 

� Identification
� Quantification

(MaxQuant)

� extraction

• Nano -LC Nano -Acquity(Waters)
• Nano-ESI-Q-orbitrapQ-Extractive (Thermo 

Fisher)

� Genes and proteins selection
�Temporal clustering of genes and proteins

�Specialized penalized and weighted linear regression model for joint inference of cascade signals in networks
�Stability selection to spot out most stable links between genes and proteins

Chronic
lymphocytic

leukemic
cells

IGHV Unmutated, 
ZAP pos, 
stageA, 

untreated

n= 3

Genes

Proteins

Genes

Proteins

n= 3

cell
proliferation
(CFSEdim) 

(proliferating
samples)

No
proliferation

(non 
proliferating

samples)

T0 T1
1h
1h

T2
1h30
2h

T3
3h30
4h

T4
6h30
7h

T5
12h
12h

T6
24h
24h

T7
48h
48h

T8
96h
96h

6 days

time

Cell proliferation
analysis

Genes
Proteins

BC
in soluble medium

R activation

-

Supplementary Figure 1. Experimental design and methods outline.
Top panel. Three proliferative and three non-proliferative CLL samples have been included. BCR 
engagement in soluble medium was performed at T0 and cell samples were collected immedia-
tely before BCR engagement at T0 and at 8 time points after cell stimulation for gene expression 
(RNAseq) and protein abundance (mass spectrometry) measurements. At day six, cell prolifera-
tion has been quantified by flow cytometry after initial staining with CFSE. Bottom panel. Sum-
mary of the processing used for mRNA expression quantification, protein abundance quantifica-
tion and mathematical analysis.
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Supplementary Figure 2.
A Unsupervised temporal cluster of gene expression. Gene expression clustering of all proliferative (P, 
red) and non-proliferative (NP, blue) samples was unsupervised and performed separately. Median P or NP 
gene expression were used for a distinct representation of non-proliferative temporal cluster of gene expres-
sion or proliferative temporal cluster. The width of a line correlates with the size of the corresponding cluster. 
B Unsupervised temporal cluster of protein abundance. Same as (A) for the protein abundance clustering 
of the proliferative (P, red) and non-proliferative (NP, blue) samples.
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Supplementary Figure 3. Temporal representation of biological functions (GO BP terms) of up- and 
down-regulated proteins in proliferating CLL samples.
The heat map shows with a color code, the number of proteins differentially up-regulated (red) or down-regu-
lated (blue) assigned to a particular Gene Ontology (GO) function, at each time point (T1 to T8) after cell 
stimulation of the proliferating samples. Functional enrichment of biological processes (GO BP terms) has 
been analyses using DAVID on the 1,107 differentially up- or down-regulated proteins in the proliferating cell 
samples. 



G_B P_B

time

G_A P_A

G_C P_C

P2P

G2G

P2G

G2P

G2P

G2P

A

B

1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0

F matrix for a G2P action

1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0 0

F matrix for a G2G, P2G, P2P actionC

D

E

F

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cascade

cutoff

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso

cutoff

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso2_W

cutoff

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Stability_Selection

cutoff

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Stability_Selection_W

cutoff

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso2_wrongW

cutoff

S
en

si
bi

lit
y

0.0 0.2 0.4 0.6 0.8
0.

2
0.

4
0.

6
0.

8
1.

0

Cascade

cutoffP
re

di
ct

iv
e 

Po
si

tiv
e 

Va
lu

e

0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso

cutoffP
re

di
ct

iv
e 

Po
si

tiv
e 

Va
lu

e
0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso2_W

cutoffP
re

di
ct

iv
e 

Po
si

tiv
e 

Va
lu

e
0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Stability_Selection

cutoffP
re

di
ct

iv
e 

Po
si

tiv
e 

Va
lu

e

0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Stability_Selection_W

cutoffP
re

di
ct

iv
e 

Po
si

tiv
e 

Va
lu

e

0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso2_wrongW

cutoffP
re

di
ct

iv
e 

Po
si

tiv
e 

Va
lu

e
0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cascade

cutoff

Fs
co

re

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso

cutoff

Fs
co

re

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso2_W

cutoff

Fs
co

re

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Stability_Selection

cutoff

Fs
co

re

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Stability_Selection_W

cutoff
Fs

co
re

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns_Lasso2_wrongW

cutoff

Fs
co

re

Supplementary Figure 4. Model formalization and validation.
A Genes and proteins are represented by circles and squares, respectively. Genes or proteins differentially 
expressed at least at one of the time point after cell stimulation are represented with a full lined circle or 
square. Genes or proteins not measured are represented with a dotted line. Authorized links between genes 
and/or proteins in the formalized model are represented by arrows (gene to protein (G2P), gene to gene 
(G2G), protein to gene (P2G), protein to protein (P2P)). Weighted links between genes and proteins with the 
same gene symbol (after translation of protein accession numbers in gene symbols (e.g. gene_A and 
protein_A) are represented in bold. Links between a protein with transcriptional factor activity and its known 
gene target (e.g. gene_B, or the corresponding protein_B if the gene_B is not measured in our experiment) 
are also weighted according to database information (e.g. RegNetwork). Matrix of temporal interactions 
shows authorized links between couple of time points for G2P (B) and for G2G, P2G and P2P (C). Each letter 
symbolizes a weight for a particular temporal link. To test our model, we analyzed the sensitivity (D), predictive 
positive value (E) and F-score (F) with Cascade algorithm, a non-weighted , an appropriately weighted and an 
incorrectly weighted version of our algorithm, a non-weighted stability selection based version of our algorithm 
(see methods). To simulate the measurements of the actors based on a regulatory network, we designed an 
algorithm that is inspired by the preferential attachment. Then, we adapted it to temporal nested networks. We 
then used our cascade network based model to make some simulations, using Laplace laws to set the values 
of the measurements of the actors at the first time point (see methods).



Supplementary Figure 5. Global model of genes and proteins temporal interactions after BCR
stimulation in proliferating CLL samples.
Visualization of the joint inference of statistical interactions between genes and proteins differentially 
expressed at least at one of the time point (T v T0) after cell stimulation in proliferating cells. Circles represent 
genes, squares represent proteins and edges represent inferred links between genes and /or proteins across 
time. The graphical representation (generated with Cytoscape software) includes 2,167 genes and 1,074 
proteins (for a total of 2,846 unique symbols). Potential interactions (represented in the graph when omega ≥ 
.01, see methods section) between genes and/or proteins expression over time are represented by time-di-
rected arrows.



Time

Layer 1

Layer 2

Layer 3

A

B

C

Supplementary Figure 6. A CLL proliferative program nested within the BCR-response program in pro-
liferative CLL-cells.
A Search for protein associated with BP terms “cell-cycle regulation” or “proliferation” identified 267 seeding 
proteins (purple) in the global model of genes-proteins temporal interactions after BCR stimulation in prolifera-
tive CLL-cells. These seeding proteins are connected to 243 neighbors in the model (green). B These 267 
seeding proteins and 243 neighbors organized into a major nested sub-network made of 173 of the seeding 
proteins and 215 neighbors. C Temporal representation of the nested sub-network, organized within three 
layers of actors.
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Supplementary Figure 7. Non proliferating sub-network
Search for protein associated with BP terms “cell-cycle regulation” or “proliferation” identified 193 seeding 
proteins in the global model of genes-proteins temporal interactions after BCR stimulation in non-proliferative 
CLL-cells. These seeding proteins and neighbors organized into a major nested sub-network made of 47 
proteins and 67 neighbors. Temporal representation of the nested sub-network, organized within three layers 
of actors (generated with Cytoscape software).
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