68 research outputs found

    Mutations in MAPT give rise to aneuploidy in animal models of tauopathy

    Get PDF
    Tau is a major microtubule-associated protein in brain neurons. Its misfolding and accumulation cause neurodegenerative diseases characterized by brain atrophy and dementia, named tauopathies. Genetic forms are caused by mutations of microtubule-associated protein tau gene (MAPT). Tau is expressed also in nonneural tissues such as lymphocytes. Tau has been recently recognized as a multifunctional protein, and in particular, some findings supported a role in genome stability. In fact, peripheral cells of patients affected by frontotemporal dementia carrying different MAPT mutations showed structural and numerical chromosome aberrations. The aim of this study was to assess chromosome stability in peripheral cell from two animal models of genetic tauopathy, JNPL3 and PS19 mouse strains expressing the human tau carrying the P301L and P301S mutations, respectively, to confirm the previous data on humans. After demonstrating the presence of mutated tau in spleen, we performed standard cytogenetic analysis of splenic lymphocytes from homozygous and hemizygous JNPL3, hemizygous PS19, and relevant controls. Losses and gains of chromosomes (aneuploidy) were evaluated. We detected a significantly higher level of aneuploidy in JNPL3 and PS19 than in control mice. Moreover, in JNPL3, the aneuploidy was higher in homozygotes than in hemizygotes, demonstrating a gene dose effect, which appeared also to be age independent. Our results show that mutated tau is associated with chromosome instability. It is conceivable to hypothesize that in genetic tauopathies the aneuploidy may be present also in central nervous system, possibly contributing to neurodegeneration

    Synthetic miniprion PrP106.

    Get PDF
    Elucidation of structure and biological properties of the prion protein scrapie (PrP(Sc)) is fundamental to an understanding of the mechanism of conformational transition of cellular (PrP(C)) into disease-specific isoforms and the pathogenesis of prion diseases. Unfortunately, the insolubility and heterogeneity of PrP(Sc) have limited these studies. The observation that a construct of 106 amino acids (termed PrP106 or miniprion), derived from mouse PrP and containing two deletions (Delta 23-88, Delta 141-176), becomes protease-resistant when expressed in scrapie-infected neuroblastoma cells and sustains prion replication when expressed in PrP(0/0) mice prompted us to generate a corresponding synthetic peptide (sPrP106) to be used for biochemical and cell culture studies. sPrP106 was obtained successfully with a straightforward procedure, which combines classical stepwise solid phase synthesis with a purification strategy based on transient labeling with a lipophilic chromatographic probe. sPrP106 readily adopted a beta-sheet structure, aggregated into branched filamentous structures without ultrastructural and tinctorial properties of amyloid, exhibited a proteinase K-resistant domain spanning residues 134-217, was highly toxic to primary neuronal cultures, and induced a remarkable increase in membrane microviscosity. These features are central properties of PrP(Sc) and make sPrP106 an excellent tool for investigating the molecular basis of the conformational conversion of PrP(C) into PrP(Sc) and prion disease pathogenesis

    Detection of prion seeding activity in the olfactory mucosa of patients with Fatal Familial Insomnia

    Get PDF
    Fatal Familial Insomnia (FFI) is a genetic prion disease caused by a point mutation in the prion protein gene (PRNP) characterized by prominent thalamic atrophy, diffuse astrogliosis and moderate deposition of PrP Sc in the brain. Here, for the first time, we demonstrate that the olfactory mucosa (OM) of patients with FFI contains trace amount of PrP Sc detectable by PMCA and RT-QuIC. Quantitative PMCA analysis estimated a PrP Sc concentration of about 1 \uc3\u97 10-14g/ml. In contrast, PrP Sc was not detected in OM samples from healthy controls and patients affected by other neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and frontotemporal dementia. These results indicate that the detection limit of these assays is in the order of a single PrP Sc oligomer/molecule with a specificity of 100%

    T cells drive negative feedback mechanisms in Cancer Associated Fibroblasts, promoting expression of co-inhibitory ligands, CD73 and IL-27 in non-small cell lung cancer

    Get PDF
    The success of immune checkpoint therapy shows tumor-reactive T cells can eliminate cancer cells but are restrained by immunosuppression within the tumor micro-environment (TME). Cancer associated fibroblasts (CAFs) are the dominant stromal cell in the TME and co-localize with T cells in non-small cell lung cancer. We demonstrate the bidirectional nature of CAF/T cell interactions; T cells promote expression of co-inhibitory ligands, MHC molecules and CD73 on CAFs, increasing their production of IL-6 and eliciting production of IL-27. In turn CAFs upregulate co-inhibitory receptors on T cells including the ectonucleotidase CD39 promoting development of an exhausted but highly cytotoxic phenotype. Our results highlight the bidirectional interaction between T cells and CAFs in promoting components of the immunosuppressive CD39, CD73 adenosine pathway and demonstrate IL-27 production can be induced in CAF by activated T cells

    Primary, secondary and compensated male biochemical hypogonadism in people living with HIV (PLWH): relevance of sex hormone-binding globulin (SHBG) measurement and comparison between liquid chromatography-tandem mass spectrometry (LC-MS/MS) and chemiluminescent immunoassay for sex steroids assay

    Get PDF
    Background: Data about classification of hypogonadism and estrogen deficiency in male people living with HIV (PLWH) are scanty. Aim: To investigate the prevalence and characterization of biochemical hypogonadism and relative estrogen deficiency in male PLWH aged < 50 comparing liquid chromatography-tandem mass spectrometry (LC-MS/MS) with chemiluminescent immunoassay (CI), and combining gonadotropin, sex hormone-binding globulin (SHBG) and serum estradiol (E2) measurements. Methods: Prospective, cross-sectional, observational study. Serum total testosterone (TT), E2, gonadotropins, SHBG were measured by CI. TT and E2 were also assessed by LC-MS/MS. Free testosterone (cFT) was calculated by Vermeulen equation. Results: A total of 316 PLWH (45.3 ± 5.3 years) were enrolled. TT and cFT by LC-MS/MS were lower compared to CI (p < 0.0001). The prevalence of biochemical hypogonadism was higher with LC-MS/MS than CI, both for TT (5.1% vs 3.2%, p < 0.0001) or cFT (9.5% vs 7%, p < 0.0001). The prevalence of hypogonadism (overt + compensated) was 17.1% for cFT using LC-MS/MS. Secondary form of hypogonadism was more prevalent than primary. The prevalence of relative estrogen deficiency was of 30.0% among hypogonadal patients and 15.5% among eugonadal. Conclusions: The prevalence of male hypogonadism results underestimated by CI compared to LC-MS/MS in PLWH, both for TT and cFT. SHBG and gonadotropins are essential for detecting T deficiency.Background: Data about classification of hypogonadism and estrogen deficiency in male people living with HIV (PLWH) are scanty. Aim: To investigate the prevalence and characterization of biochemical hypogonadism and relative estrogen deficiency in male PLWH aged < 50 comparing liquid chromatography-tandem mass spectrometry (LC-MS/MS) with chemiluminescent immunoassay (CI), and combining gonadotropin, sex hormone-binding globulin (SHBG) and serum estradiol (E2) measurements. Methods: Prospective, cross-sectional, observational study. Serum total testosterone (TT), E2, gonadotropins, SHBG were measured by CI. TT and E2 were also assessed by LC-MS/MS. Free testosterone (cFT) was calculated by Vermeulen equation. Results: A total of 316 PLWH (45.3 ± 5.3 years) were enrolled. TT and cFT by LC-MS/MS were lower compared to CI (p < 0.0001). The prevalence of biochemical hypogonadism was higher with LC-MS/MS than CI, both for TT (5.1% vs 3.2%, p < 0.0001) or cFT (9.5% vs 7%, p < 0.0001). The prevalence of hypogonadism (overt + compensated) was 17.1% for cFT using LC-MS/MS. Secondary form of hypogonadism was more prevalent than primary. The prevalence of relative estrogen deficiency was of 30.0% among hypogonadal patients and 15.5% among eugonadal. Conclusions: The prevalence of male hypogonadism results underestimated by CI compared to LC-MS/MS in PLWH, both for TT and cFT. SHBG and gonadotropins are essential for detecting T deficiency

    Gerstmann-Sträussler-Scheinker disease amyloid protein polymerizes according to the "dock-and-lock" model.

    Get PDF
    Prion protein (PrP) amyloid formation is a central feature of genetic and acquired prion diseases such as Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob disease. Themajor component of GSS amyloid is a PrP fragment spanning residues ∼82-146, which when synthesized as a peptide, readily forms fibrils featuring GSS amyloid. The present study employed surface plasmon resonance (SPR) to characterize the binding events underlying PrP82-146 oligomerization at the first stages of fibrillization, according to evidence suggesting a pathogenic role of prefibrillar oligomers rather than mature amyloid fibrils. We followed in real time the binding reactions occurring during short term (seconds) addition of PrP82-146 small oligomers (1-5-mers, flowing species) onto soluble prefibrillar PrP82-146 aggregates immobilized on the sensor surface. SPR data confirmed very efficient aggregation/elongation, consistent with the hypothesis of nucleation-dependent polymerization process. Much lower binding was observed when PrP82-146 flowed onto the scrambled sequence of PrP82-146 or onto prefibrillar Aβ42 aggregates. As previously found with Aβ40, SPR data could be adequately fitted by equations modeling the "dock-and-lock" mechanism, in which the "locking" step is due to sequential conformational changes, each increasing the affinity of the monomerfor the fibril until a condition of irreversible binding is reached. However, these conformational changes (i.e. the locking steps) appear to be faster and easier with PrP82-146 than with Aβ40. Such differences suggest that PrP82-146 has a greater propensity to polymerize and greater stability of the aggregates. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc

    Identification of nuclear substrates of Akt/PKB by functional proteomics: prohibitin 2 is a target of Akt phosphorylation in human promyelocytic leukemia cells

    Get PDF
    The serine/threonine protein kinase Akt is a major signal transducer of the phosphoinositide 3-kinase (PI 3-K) pathway in all cells and tissues and plays a pivotal role in the maintenance of cellular processes including cell growth, proliferation, survival, metabolism and development of many malignancies including acute myeloid leukemia. The frequent aberrant activation of the PI 3-K/Akt pathway in human cancer has made it an attractive therapeutic target. Therefore, the study of effector proteins downstream of Akt could clarify the role of Akt in the development of myeloid leukemia. Although both localization and activity of Akt in the nuclear compartment are well documented, most Akt substrates identified so far are located in the cytoplasm, while nuclear substrates have remained elusive. In this study, we applied a proteomic approach to identify novel Akt substrates by using an antibody that recognized a consensus motif phosphorylated by Akt (K/RXK/RXXS/T) when phosphorylated on S/T (anti-phospho-Akt substrate antibody). NB4 cells were treated with ATRA, and the putative Akt substrate proteins were isolated by immunoprecipitation with the anti-phospho-Akt substrate antibody. The proteins were separated on SDS-PAGE and analyzed by ESI-Q-TOF mass spectrometry. This analysis indicated prohibitin 2, a potential tumor suppressor protein with potent transcriptional functions in the nucleus, as a putative substrate of Akt in the nucleus of NB4 cells. The putative Akt-Prohibitin 2 interaction was validated by reverse in vivo immunoprecipitation from nuclear protein of NB4 cells. In vitro phosphorylation of endogenous prohibitin 2 by recombinant Akt further validated this result. Vandermoere F, El Yazidi-Belkoura I, Demont Y, Slomianny C, Antol J, Lemoine J, Hondermarck H. Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics. 2007 Jan;6(1):114-24. Kasashima K, Ohta E, Kagawa Y, Endo H. Mitochondrial functions and estrogen receptor-dependent nuclear translocation of pleiotropic human prohibitin 2. J Biol Chem. 2006 Nov 24;281(47):36401-10

    PMCA-based detection of prions in the olfactory mucosa of patients with Sporadic Creutzfeldt-Jakob Disease

    Get PDF
    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials

    Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome

    Get PDF
    Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria

    Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p.N680S: A pharmacogenetic study

    Get PDF
    Study question: Does the spermDNAfragmentation index (DFI) improve depending on the FSH receptor (FSHR) genotype as assessed by the nonsynonymous polymorphisms rs6166 (p.N680S) after 3 months of recombinant FSH treatment in men with idiopathic infertility? summary answer: FSH treatment significantly improves sperm DFI only in idiopathic infertile men with the p.N680S homozygous N FSHR. what is known already: FSH, fundamental for spermatogenesis, is empirically used to treat male idiopathic infertility and several studies suggest that DFI could be a candidate predictor of response to FSH treatment, in terms of probability to conceive. Furthermore, it is known that the FSHR single nucleotide polymorphism (SNP) rs6166 (p.N680S) influences ovarian response in women and testicular volume in men. study design, size and duration: Amulticenter, longitudinal, prospective, open-label, two-arm clinical trial was performed. Subjects enrolled were idiopathic infertile men who received 150 IU recombinant human FSH s.c. every other day for 12 weeks and were followed-up for a further 12 weeks after FSH withdrawal. Patients were evaluated at baseline, at the end of treatment and at the end of follow-up. participants/materials, setting, methods: Eighty-nine men with idiopathic infertility carrier of the FSHR p.N680S homozygousNor S genotype, FSH 64 8 IU/l and DFI >15%,were enrolled. A total of 66 patients had DFI analysis completed on at least two visits. DFI was evaluated in one laboratory by TUNEL/PI (propidium iodide) assay coupled to flow cytometry, resolving two different fractions of sperm, namely the 'brighter' and 'dimmer' sperm DFI fractions. main results and the roleof chance: Thirty-eightmen(57.6%)were carriers of the p.N680S homozygousNand 28 (42.4%) of the homozygous S FSHR. Sperm concentration/number was highly heterogeneous and both groups included men ranging from severe oligozoospermia to normozoospermia. Total DFI was significantly lower at the end of the study in homozygous carriers of the p.N680SNversus p.N680S S allele (P = 0.008). Total DFI decreased significantly from baseline to the end of the study (P = 0.021) only in carriers of the p.N680S homozygous N polymorphism, and this decrease involved the sperm population containing vital sperm (i.e. brighter sperm) (P = 0.008). The dimmer sperm DFI fraction, including only nonvital sperm, was significantly larger in p.N680S S homozygous patients than in homozygous N men (P = 0.018). Total DFIwas inversely related to total sperm number (P = 0.020) and progressive sperm motility (P = 0.014).Whenpatients were further stratified according to sperm concentration (normoozospermic versus oligozoospermic) or -211G>T polymorphism in the FSHB gene (rs10835638) (homozygous Gversus others), the significant improvement of sperm DFI in FSHR p.N680S homozygousNmen was independent of sperm concentration and associated with the homozygous FSHB -211G>T homozygous G genotype. limitations, reasons for caution: The statistical power of the study is 86.9% with alpha error 0.05. This is the first pharmacogenetic study suggesting that FSH treatment induces a significant improvement of total DFI in men carriers of the p.N680S homozygousNFSHR; however, the results need to be confirmed in larger studies using a personalized FSH dosage and treatment duration. wider implications of the findings: The evaluation of sperm DFI as a surrogate marker of sperm quality, and of the FSHR SNP rs6166 (p.N680S), might be useful to predict the response to FSH treatment in men with idiopathic infertility. study funding/competing interest(s): The study was supported by an unrestricted grant to M.S. and H.M.B. from Merck Serono that provided the drug used in the study. MS received additional grants from Merck Serono and IBSA as well as honoraria from Merck Serono. The remaining authors declare that no conflicts of interest are present. trial registration number: EudraCT number 2010-020240-35
    • …
    corecore