18 research outputs found

    A New Method for Identifying Stem-Like Cells in Esophageal Cancer Cell Lines

    Get PDF
    Cancer stem cells (CSCs) appear to resist chemo-radiotherapy and initiate tumor recurrence in patients. Isolation and further characterization of this subpopulation is important for targeting CSCs. Flow cytometry using Aldefluor, a fluorescent substrate of aldehyde dehydrogenase, has been used to isolate CSCs from various cancer cell lines. However, newtechniques are needed to locate and identify CSCs in culture for live-cell analyses such as fluorescence microscopy without introducing artifacts during cell sorting and to observe CSC and non-CSC interactions. Previously, we characterized a distinct CSC subpopulation within human esophageal cancer cell lines (ESCC). In this study we introduce the attached-cell Aldefluor method (ACAM) to detect CSCs in ESCC cell lines (KY-5, KY-10, TE-1, TE-8, YES-1, YES-2). To validate this technique, we isolated CSCs from the YES-2 parental line using standard Aldefluor flow cytometry to create a cell line enriched in CSCs (YES-2CSC). This line showed significantly greater ACAM staining and higher CD44 levels than YES-2. ACAMalso showed significantly higher ALDH activity in YES-2CSC than in YES-2S, a cell line that has a diminished CSC subpopulation after having survived treatment with curcumin. ACAM stained cells within tumorspheres made from the CSC-enriched line but not differentiating cells from the tumorspheres. This study also demonstrates a new method for generating and growing tumorspheres without the growth factor supplements normally used in medium to form tumorspheres. ACAM should be evaluated using other cancer cell lines to further substantiate its effectiveness and to characterize CSCs in culture through various imaging techniques. ©Ivyspring International Publisher

    Effects of Curcumin on Stem-Like Cells in Human Esophageal Squamous Carcinoma Cell Lines

    Get PDF
    Background: Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized.Methods: Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines.Results: The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines.Conclusion: Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence. © 2012 Almanaa et al.; licensee BioMed Central Ltd

    Prognostic model development and molecular subtypes identification in bladder urothelial cancer by oxidative stress signatures

    Get PDF
    Background: Mounting studies indicate that oxidative stress (OS) significantly contributes to tumor progression. Our study focused on bladder urothelial cancer (BLCA), an escalating malignancy worldwide that is growing rapidly. Our objective was to verify the predictive precision of genes associated with overall survival (OS) by constructing a model that forecasts outcomes for bladder cancer and evaluates the prognostic importance of these genetic markers. Methods: Transcriptomic data were obtained from TCGA-BLCA and GSE31684, which are components of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), respectively. To delineate distinct molecular subtypes, we employed the non-negative matrix factorization (NMF)method. The significance of OS-associated genes in predicting outcomes was assessed using lasso regression, multivariate Cox analysis, and univariate Cox regression analysis. For external validation, we employed the GSE31684 dataset. CIBERSORT was utilized to examine the tumor immune microenvironment (TIME). A nomogram was created and verified using calibration and receiver operating characteristic (ROC) curves, which are based on risk signatures. We examined variations in clinical characteristics and tumor mutational burden (TMB) among groups classified as high-risk and low-risk. To evaluate the potential of immunotherapy, the immune phenomenon score (IPS) was computed based on the risk score. In the end, the pRRophetic algorithm was employed to forecast the IC50 values of chemotherapy medications. Results: In our research, we examined the expression of 275 genes associated with OS in 19 healthy and 414 cancerous tissues of the bladder obtained from the TCGA database. As a result, a new risk signature was created that includes 4 genes associated with OS (RBPMS, CRYAB, P4HB, and PDGFRA). We found two separate groups, C1 and C2, that showed notable variations in immune cells and stromal score. According to the Kaplan-Meier analysis, patients classified as high-risk experienced a considerably reduced overall survival in comparison to those categorized as low-risk (P<0.001). The predictive capability of the model was indicated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curve surpassing 0.6. Our model showed consistent distribution of samples from both the GEO database and TCGA data. Both the univariate and multivariate Cox regression analyses validated the importance of the risk score in relation to overall survival (P < 0.001). According to our research, patients with a lower risk profile may experience greater advantages from using a CTLA4 inhibitor, whereas patients with a higher risk profile demonstrated a higher level of responsiveness to Paclitaxel and Cisplatin. In addition, methotrexate exhibited a more positive outcome in patients with low risk compared to those with high risk. Conclusions: Our research introduces a novel model associated with OS gene signature in bladder cancer, which uncovers unique survival results. This model can assist in tailoring personalized treatment approaches and enhancing patient therapeutic effect in the management of bladder cancer

    Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines

    No full text
    Abstract Background Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Methods Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20–80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. Results The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Conclusion Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.</p

    Lipolytic Postbiotic from Lactobacillus paracasei Manages Metabolic Syndrome in Albino Wistar Rats

    No full text
    The current study investigates the capacity of a lipolytic Lactobacillus paracasei postbiotic as a possible regulator for lipid metabolism by targeting metabolic syndrome as a possibly safer anti-obesity and Anti-dyslipidemia agent replacing atorvastatin (ATOR) and other drugs with proven or suspected health hazards. The high DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2&prime;-azino-bis (3-ethyl benzothiazoline-6-sulphonic acid)] scavenging activity and high activities of antioxidant enzyme such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) of the Lactobacillus paracasei postbiotic (cell-free extract), coupled with considerable lipolytic activity, may support its action against metabolic syndrome. Lactobacillus paracasei isolate was obtained from an Egyptian cheese sample, identified and used for preparing the postbiotic. The postbiotic was characterized and administered to high-fat diet (HFD) albino rats (100 and 200 mg kg&minus;1) for nine weeks, as compared to atorvastatin (ATOR; 10 mg kg&minus;1). The postbiotic could correct the disruption in lipid metabolism and antioxidant enzymes in HFD rats more effectively than ATOR. The two levels of the postbiotic (100 and 200 mg kg&minus;1) reduced total serum lipids by 29% and 34% and serum triglyceride by 32&ndash;45% of the positive control level, compared to only 25% and 35% in ATOR&rsquo;s case, respectively. Both ATOR and the postbiotic (200 mg kg&minus;1) equally decreased total serum cholesterol by about 40% and 39%, while equally raising HDL levels by 28% and 30% of the positive control. The postbiotic counteracted HFD-induced body weight increases more effectively than ATOR without affecting liver and kidney functions or liver histopathology, at the optimal dose of each. The postbiotic is a safer substitute for ATOR in treating metabolic syndrome

    Ononitol Monohydrate&mdash;A Glycoside Potentially Inhibit HT-115 Human Colorectal Cancer Cell Proliferation through COX-2/PGE-2 Inflammatory Axis Regulations

    No full text
    We aimed to inhibit HT-115 human colorectal cancer cell proliferation using ononitol monohydrate (OMH), a bioactive principle isolated from Cassia tora (L.). The cytotoxicity of OMH has been assayed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), cell and nuclear morphology, and apoptosis mechanisms have been analyzed using real-time PCR. Higher doses of OMH potentially inhibit 84% of HT-115 cell viability; we observed that the IC50 level was 3.2 &micro;M in 24 h and 1.5 &micro;M in 48 h. The treatment with 3.2 &micro;M of OMH for 48 h characteristically showed 64% apoptotic cells and 3% necrotic cells, confirmed by propidium iodide and acridine orange/ethidium bromide (AO/ErBr) staining. We found the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE-2) in the control HT-115 cells, which was directly associated with colorectal tumorigenesis. However, 3.2 &micro;M of OMH treatment to HT-115 cells for 48 h significantly reduced inflammatory genes, such as TNF-&alpha;/IL-1&beta; and COX-2/PGE-2. The downregulation of COX-2 and PGE-2 was more significant with the 3.2 &micro;M dose when compared to the 1.5 &micro;M dose of OMH. Additionally, the protein levels of COX-2 and PGE-2 were decreased in the 3.2 &micro;M OMH-treated cells compared to the control. We found significantly (p &le; 0.01) increased mRNA expression levels of tumor-suppressor genes, such as pRb2, Cdkn1a, p53, and caspase-3, and decreased Bcl-2, mdm2, and PCNA after 48 h was confirmed with apoptotic stimulation. In conclusion, the antiproliferative effect of OMH via the early suppression of protumorigenic inflammatory agents TNF-&alpha;/IL-1&beta;, COX-2/PGE-2 expression, and the increased expression levels of tumor-suppressor genes Cdkn1a and pRb2, which enhanced the activation of Bax and p53

    Silver Nanoparticles (AgNPs) Biosynthesized by Aspergillus flavus KF946095; their Characterization and Antibacterial Activity

    Get PDF
    The antimicrobial agents of silver nanoparticles (AgNPs) have been applied a little while back in diverse therapeutic studies. In this analysis, AgNPs were biosynthesized using an ecologically welcomed and cost-effective simple of bio-reduction. An isolate of Aspergillus flavus KF946095 (A. flavus) was found to biosynthesize AgNPs; the size of AgNPs was (56nm) and detected by UV-Vis analysis at (400 nm). The reducing properties for biosynthesis of AgNPs are mainly due to the protein functional surface reactive groups detected by Fourier Transform Infrared spectroscopy (FTIR).Whereas, FTIR for AgNPs showed different peaks at 3994.5, 3201.6, 1801.4, 1643.2 and 1604.7 cm-1 that shared with the biosynthesize and stability of AgNPs as protein capping agents. Transmission Electron Microscope (TEM) confirmed the scattering of biosynthesized AgNPs within a sol with oval and round shapes. The antibiotic susceptibility test was studied for some pathogenic bacteria. Staphylococcus aureus DSM 1104 (S. aureus) appeared to be the more resistant strain; it resisted the action of 6 antibiotics out of 8 ones tested. MIC value of AgNPs was 20µg/mL and antibiotic ciprofloxacin was 30µg/mL. Mixture of MIC values or double MIC values distinctively inhibited the multidrug resistant (MDR) S.aureus

    Anti -oxidant, anti -bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae

    No full text
    Silver nanoparticles (Ag NPs) with anti -bacterial effects against the biofilm-producing bacteria Klebsiella pneu- moniae ( K. pneumoniae ) were synthesized using the marine seaweed Gracilaria corticata ( G. corticata ). Physiochemical characterization using UV -spectrometer, fourier transform infrared spectroscopy (FTIR) and X- ray diffraction (XRD) confirmed that the synthesized material consisted of Ag NPs. Morphological analysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with energy -dispersive X-ray (EDX) analysis confirmed the shape, size, surface morphology, and available chemical composition of the Ag NPs. Furthermore, the rich phenolic and flavonoid content of G. corticata has excellent antioxidant activity, which was confirmed through gas chromatography -mass spectrometry (GC -MS) analysis. The highest anti- bacterial activity and biofilm reduction (88 %) of Ag NPs treated K. pneumoniae was observed at 50 ?g/mL and 100 ?g/mL concentrations respectively. The bacterial viability and exopolysaccharide production of K. pneu- moniae significantly decreased after treatment with Ag NPs. Morphological alterations and intracellular damageNational Natural Science Foundation of China 41950410573 31670009 China Postdoctoral Science Foundation 2019M663213 King Saud University RG-1438-091 Bharathidasan University 05441/URF/K7/2013 Confocal Laser Scanning Electron Microscope (DST-PURSE) SR/FT/LS-113/200

    Aflatoxin B<sub>1</sub> Exposure Aggravates Neurobehavioral Deficits and Immune Dysfunctions of Th1, Th9, Th17, Th22, and T Regulatory Cell-Related Transcription Factor Signaling in the BTBR T<sup>+</sup>Itpr3<sup>tf</sup>/J Mouse Model of Autism

    No full text
    Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-β1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-β1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD
    corecore