201 research outputs found

    Prevalence and genetic characterization of Cryptosporidium spp. In diarrheic children from Gonbad Kavoos city, Iran

    Get PDF
    Background: Cryptosporidium is an intestinal protozean parasite causing water-borne and foodborne outbreaks of diarrheal diseases. The present study was per-formed in order to find prevalence and subtypes of Cryptosporidium among children with diarrhea in Gonbad Kavoos City, Northern Iran. Methods: Diarrheic samples were collected from 547 children. The initial parasi-tological diagnosis was made based on detection of oocysts using the modified Ziehl-Neelsen acid-fast staining method. The positive microscopically samples were selected for sequence analysis of partial 60 kDa glycoprotein (gp60) gene. Results: Out of 547 collected samples, 27 (4.94) were positive for Cryptosporid-ium oocysts. Fifteen from 27 positive samples successfully amplified in PCR. Se-quences analysis of gp60 gene in 15 Cryptosporidium isolates revealed that all of them (100) were C. parvum. The results showed three subtypes of IIa subtype family (7 cases) including IIaA16G2R1, IIaA17G1R1, IIaA22G3R1 and one subtype of IId subtype family (8 cases). The most common allele was IId A17G1d (53.3). Conclusion: The predominance of zoonotic subtype families of C. parvum species (IIa, IId) in the present study is in concordance with previous studies in Iran and emphasizes the significance of zoonotic transmission of cryptosporidiosis in the country. © 2015, Tehran University of Medical Sciences (TUMS). All rights Reserved

    Influence of core stability exercise on lumbar vertebral instability in patients presented with chronic low back pain: A randomized clinical trial

    Get PDF
    Background: Excessive lumbar vertebrae translation and rotation in sagittal plane has been attributed as an associated factor of lumbar segmental instability (LSI) and low back pain (LBP). Reduction of these abnormalities improves back pain. The aim of this study was to investigate the effect of core stability exercise on the translation and rotation of lumbar vertebrae in sagittal plane in patients with nonspecific chronic LBP (NSCLBP). Methods: In this randomized clinical trial, 30 patients with NSCLBP due to LSI were included. The participants were randomly divided into two groups of treatment and control. The treatment group received general exercises plus core stability exercise for 8 weeks whereas; the control group received only general exercises. The magnitude of translation (mm) and rotation (deg) of lumbar vertebrae in the sagittal plane was determined by radiography in flexion and extension at baseline and after intervention. The primary outcome measures were to determine the mean changes from baseline in translation and rotation of the lumbar vertebrae in the sagittal plane after 8 weeks of intervention in each group. The secondary outcome was to compare the two groups in regard to translation and rotation of the lumbar vertebrae at the end of the study period. Data were analyzed using paired t-test and independent t-test. Results: Thirty patients aged 18-40 years old with clinical diagnosis of NSCLBP entered the study. Compared with baseline values, mean value of translation and rotation of the lumbar vertebra reduced significantly in both groups (P<0.05), except L3 translation in the control group. At the endpoint, mean translation value of L4 (P=0.04) and L5 (P=0.001) and rotation of the L5 (P=0.01) in the treatment group was significantly lower than the control group. Conclusion: These findings indicate that in patients presented with NSCLBP due to lumbar segmental instability, core stability exercises plus general exercises are more efficient than general exercises alone in the improvement of excessive lumbar vertebrae translation and rotation

    Durations required to distinguish noise and tone: Effects of noise bandwidth and frequency.

    Get PDF
    Perceptual audio coders exploit the masking properties of the human auditory system to reduce the bit rate in audio recording and transmission systems; it is intended that the quantization noise is just masked by the audio signal. The effectiveness of the audio signal as a masker depends on whether it is tone-like or noise-like. The determination of this, both physically and perceptually, depends on the duration of the stimuli. To gather information that might improve the efficiency of perceptual coders, the duration required to distinguish between a narrowband noise and a tone was measured as a function of center frequency and noise bandwidth. In experiment 1, duration thresholds were measured for isolated noise and tone bursts. In experiment 2, duration thresholds were measured for tone and noise segments embedded within longer tone pulses. In both experiments, center frequencies were 345, 754, 1456, and 2658 Hz and bandwidths were 0.25, 0.5, and 1 times the equivalent rectangular bandwidth of the auditory filter at each center frequency. The duration thresholds decreased with increasing bandwidth and with increasing center frequency up to 1456 Hz. It is argued that the duration thresholds depended mainly on the detection of amplitude fluctuations in the noise bursts.MRC (G0701870

    Comparison of different algorithms to map hydrothermal alteration zones using ASTER remote sensing data for polymetallic Vein-Type ore exploration: Toroud-Chahshirin Magmatic Belt (TCMB), north Iran

    Full text link
    © 2019 by the authors. Polymetallic vein-type ores are important sources of precious metal and a principal type of orebody for various base-metals. In this research, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing data were used for mapping hydrothermal alteration zones associated with epithermal polymetallic vein-type mineralization in the Toroud-Chahshirin Magmatic Belt (TCMB), North of Iran. The TCMB is the largest known goldfield and base metals province in the central-north of Iran. Propylitic, phyllic, argillic, and advanced argillic alteration and silicification zones are typically associated with Au-Cu, Ag, and/or Pb-Zn mineralization in the TCMB. Specialized image processing techniques, namely Selective Principal Component Analysis (SPCA), Band Ratio Matrix Transformation (BRMT), Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) were implemented and compared to map hydrothermal alteration minerals at the pixel and sub-pixel levels. Subtle differences between altered and non-altered rocks and hydrothermal alteration mineral assemblages were detected and mapped in the study area. The SPCA and BRMT spectral transformation algorithms discriminated the propylitic, phyllic, argillic and advanced argillic alteration and silicification zones as well as lithological units. The SAM and MTMF spectral mapping algorithms detected spectrally dominated mineral groups such as muscovite/montmorillonite/illite, hematite/jarosite, and chlorite/epidote/calcite mineral assemblages, systematically. Comprehensive fieldwork and laboratory analysis, including X-ray diffraction (XRD), petrographic study, and spectroscopy were conducted in the study area for verifying the remote sensing outputs. Results indicate several high potential zones of epithermal polymetallic vein-type mineralization in the northeastern and southwestern parts of the study area, which can be considered for future systematic exploration programs. The approach used in this research has great implications for the exploration of epithermal polymetallic vein-type mineralization in other base metals provinces in Iran and semi-arid regions around the world

    Exploring Unknown Universes in Probabilistic Relational Models

    Full text link
    Large probabilistic models are often shaped by a pool of known individuals (a universe) and relations between them. Lifted inference algorithms handle sets of known individuals for tractable inference. Universes may not always be known, though, or may only described by assumptions such as "small universes are more likely". Without a universe, inference is no longer possible for lifted algorithms, losing their advantage of tractable inference. The aim of this paper is to define a semantics for models with unknown universes decoupled from a specific constraint language to enable lifted and thereby, tractable inference.Comment: Also accepted at the 9th StarAI Workshop at AAAI-2

    Development of Sensitive Detection of Cryptosporidium and Giardia from Surface Water in Iran

    Get PDF
    Background: The protozoan parasites Cryptosporidium spp. and Giardia are known to occur widely in both raw and drinking waters. They are two of the causative agents of waterborne out-breaks of gastroenteritis throughout the world. In the present study, a PCR assay and FA were developed for detection of Cryptosporidium oocysts and Giardia cyst in environmental samples. Methods: We have detected Cryptosporidium spp. oocysts and Giardia cysts in seeded and un-seeded environmental water samples by PCR method. Water samples were spiked with oocysts (50, 100,300,500) and filtrated with a 1.2-µm pore size cellulose nitrate and follow by DNA extrac¬tion and purification by QIAamp DNA mini kit. Nested-PCR assay amplified an 850 bp fragment of 18s rRNA gene specific for Cryptosporidium and 435 bp fragment of glutamate dehydrogenase (GDH) target gene for Giardia. Also many river water from north of Iran, be checked by these methods. Results: Cryptosporidium and Giardia DNAs were detected in seeded water sample and Giardia was detected in all 5 water samples from river in north of Iran by nested- PCR and FA. Also in one river water sample, Cryptosporidium was detected.Conclusion: This protocol is effective for detection of these waterborne parasites in treated and untreated water samples. This study can also serve as a platform for further investigations and research water source in Iran

    Frequency Selection to Improve the Performance of Microwave Breast Cancer Detecting Support Vector Model by Using Genetic Algorithm

    Get PDF
    This paper presents an innovative paradigm for breast cancer detection by leveraging a Support Vector Machine (SVM) based model fueled with numerical data obtained from the cutting-edge MammoWave device. Operating in the microwave spectrum between 1 to 9 GHz and boasting a 5 MHz sampling rate, MammoWave emerges as a groundbreaking solution, specifically addressing the limitations posed by conventional methods, particularly for women under 50. This technological advancement opens a promising avenue for more frequent and precise breast health monitoring. To enhance the efficacy of the SVM model, our research introduces a metaheuristic-based methodology, strategically navigating the selection of frequencies crucial for breast cancer detection within the MammoWave dataset. Overcoming the challenge of judicious frequency selection, our approach employs wrapper methods in metaheuristic algorithms. These algorithms iterate through subsets of frequencies, guided by the SVM model's performance, culminating in the identification of the optimal frequency subset that significantly refines precision in breast cancer detection. Moreover, a novel cost function is proposed to strike a balanced trade-off between sensitivity and specificity, ensuring an acceptable accuracy rate. The results exhibit a noteworthy 10% increase in specificity, a milestone achievement for the MammoWave device, yielding an overall detection rate of approximately 62%. This research underscores the potential of seamlessly integrating metaheuristic algorithms into frequency selection, thereby contributing significantly to the ongoing refinement of MammoWave's capabilities in breast cancer detection

    Molecular Epidemiology of Cryptosporidiosis in Iranian Children, Tehran, Iran

    Get PDF
    Background: Cryptosporidium is a worldwide protozoan parasite and one of the most common causes of infection and diarrhea in humans and cattle. The aim of the present study was determina­tion of subtypes of Cryptosporidium among children with diarrhea in Tehran by se­quence analysis of the highly polymorphic 60-kDa glycoprotein (GP60) gene.Methods: Fecal samples were collected from 794 diarrheic children. Initial identification of Crypto­spo­ridium was carried out on stool samples by Ziehl-Neelsen acid-fast staining method. DNA was extracted from positive microscopically samples and Cryptosporidium genotypes and subtypes were determined, accordingly."nResults: Out of 794 collected samples, 19 (2.40 %) were positive for Cryptosporidium oocysts. Sequences analysis of GP60 gene showed that 17 (89.47 %) of the positive isolates were Crypto­spori­dium parvum and 2 (10.52 %) were C. hominis. All subtypes of C. parvum isolates belonged to allele families IIa (6/17) and IId (11/17). The most common allele in all 17 isolates belonged to IId A20G1a (41.18%). A22G1 (IF) subtype was detected in two C. hominis isolates of the chil­dren."nConclusion: The predominancy of C. parvum species (specially, IId A20G1a sub­type) in current study underlines the importance of zoonotic Cryptosporidium transmission in Iran

    An equivalent model of a nonlinear bolted flange joint

    Get PDF
    The dynamic response of individual components in an assembled structure shows high accuracy compared to experimental measurements of the system response. However, when it comes to assemblies, the conventional linear approaches fail to deliver good accuracy, due to the uncertain linear and nonlinear mechanisms in the contact interface of the joints. Therefore, the inherent dynamics of the contact interfaces needs to be considered in modeling assembled structures. In this paper the prediction of the nonlinear dynamic response in a bolted flange joint was obtained in two ways. First, a 3D detailed finite element model capable of representing the micro-slip mechanism was made using a quasi-static time stepping analysis. The linear characteristics and nonlinear mechanisms developing in the contact interface of a bolted joint are investigated by using the 3D detailed model. Moreover, the natural frequencies of the assembled structure (representing the linear response) and the micro-slip behavior in terms of hysteresis loops (representing the nonlinear response) are obtained using the detailed model. Second, an equivalent model composed of beam elements and an appropriate joint model is then constructed for the assembled structure. An identification approach is proposed, and the parameters of the joint model are identified using both linear and nonlinear characteristics, i.e. natural frequencies and hysteresis loops. Comparing the hysteresis loops obtained from the detailed and equivalent models verifies the accuracy of the joint model used to represent the contact interface and the identification approach proposed for parameter quantification

    Identification and Clinical Implications of a Novel MYO15A Variant in a Consanguineous Iranian Family by Targeted Exome Sequencing

    Get PDF
    BACKGROUND AND OBJECTIVES: Hereditary hearing loss (HL) is known by a very high genetic heterogeneity, which makes a molecular diagnosis problematic. Next-generation sequencing (NGS) is a new strategy that can overcome this problem. METHOD: A comprehensive family history was obtained, and clinical evaluations and pedigree analysis were performed in the family with 3 affected members. After excluding mutations in the GJB2 and 7 other most common autosomal recessive nonsyndromic HL genes via Sanger sequencing and genetic linkage analysis in the family, we applied the Otogenetics deafness NGS panel in the proband of this family. RESULTS: NGS results showed a novel rare variant (c.7720C>T) in the MYO15A gene. This nonsense variant in the exon 40 of the MYO15A gene fulfills the criteria of being categorized as pathogenic according to the American College of Medical Genetics and Genomics guideline. CONCLUSIONS: New DNA sequencing technologies could lead to identification of the disease causing variants in highly heterogeneous disorders such as HL
    corecore