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Abstract— This paper presents an innovative paradigm for 

breast cancer detection by leveraging a Support Vector Machine 

(SVM) based model fueled with numerical data obtained from 

the cutting-edge MammoWave device. Operating in the 

microwave spectrum between 1 to 9 GHz and boasting a 5 MHz 

sampling rate, MammoWave emerges as a groundbreaking 

solution, specifically addressing the limitations posed by 

conventional methods, particularly for women under 50. This 

technological advancement opens a promising avenue for more 

frequent and precise breast health monitoring. 

To enhance the efficacy of the SVM model, our research 

introduces a metaheuristic-based methodology, strategically 

navigating the selection of frequencies crucial for breast cancer 

detection within the MammoWave dataset. Overcoming the 

challenge of judicious frequency selection, our approach 

employs wrapper methods in metaheuristic algorithms. These 

algorithms iterate through subsets of frequencies, guided by the 

SVM model's performance, culminating in the identification of 

the optimal frequency subset that significantly refines precision 

in breast cancer detection. Moreover, a novel cost function is 

proposed to strike a balanced trade-off between sensitivity and 

specificity, ensuring an acceptable accuracy rate. The results 

exhibit a noteworthy 10% increase in specificity, a milestone 

achievement for the MammoWave device, yielding an overall 

detection rate of approximately 62%. This research underscores 

the potential of seamlessly integrating metaheuristic algorithms 

into frequency selection, thereby contributing significantly to 

the ongoing refinement of MammoWave's capabilities in breast 

cancer detection. 

Keywords— Breast cancer, Frequency selection, 

MammoWave device, Optimization. 

I. INTRODUCTION  

Breast cancer is the second leading cause of death in 

women globally [1]. Monitoring breast health involves using 

various technologies like mammography, ultrasound, and 

MRI. Mammography, used within screening programs, has 

limitations: generally, it is not recommended for women 

under 50. Also, it can't be performed frequently, restricted to 

once every 2 years in the EU. MammoWave, an innovative 

technology using microwave radiation (1-9 GHz), overcomes 

age-related and frequency limitations, providing numerical 

data and images for comprehensive information. This paper 

focuses on the numerical data obtained through microwave 

antennas [2]. 

Integration of Artificial Intelligence (AI) and Machine 

Learning (ML) in breast cancer care enhances diagnostic 

precision, treatment efficacy, and patient outcomes [3]. These 

technologies enable early detection, minimizing false 

positives and negatives in medical image interpretation. In 

the realm of AI and ML-based models for medical purposes, 

the choice of a suitable feature extraction method is 

paramount to ensure the efficacy and accuracy of the model.  

Support Vector Machine (SVM) stands out as a prominent 

classifier in machine learning-based breast cancer detection 

due to its exceptional attributes [4-6]. Renowned for its high 

accuracy, SVM excels in distinguishing between malignant 

and benign cases. Its versatility in handling both linear and 

non-linear relationships within complex data structures is 

crucial for capturing the intricate patterns often present in 

breast cancer datasets. SVM's robustness in the face of noisy 

data and outliers enhances its reliability in medical contexts 

where variations are common. The flexibility provided by 

kernel functions allows SVM to effectively map data into 

higher-dimensional spaces, accommodating the complexity 

of medical imaging and diagnostics. Additionally, SVM's 

efficient use of memory, effectiveness in high-dimensional 

spaces, and established performance in real-world 

applications contribute to its widespread recognition and 

adoption in the field of breast cancer detection using machine 

learning. 

Feature extraction involves identifying and highlighting 

relevant information from raw data, particularly crucial in 

medical applications where intricate patterns and subtle 

nuances can significantly impact diagnostic outcomes. So far 

different types of features have been introduced in breast 

cancer detection models; some of the most frequently used 

ones are statistical features (SF), Principal Component 

Analysis (PCA) [7], t-Distributed Stochastic Neighbor 

Embedding (tSNE) [7], Uniform Manifold Approximation 

and Projection (UMAP) [7], Hough transform [8], and Gray 

Level Co-occurrence Matrix (GLCM) [9]. On the other hand, 

a judicious selection of features not only enhances the 

model's ability to discern meaningful information but also 

aids in reducing computational complexity. Additionally, 

feature selection plays a vital role in streamlining the model 

by identifying the most pertinent variables, eliminating 

redundant or irrelevant ones. This process not only improves 

the model's interpretability but also contributes to mitigating 

overfitting issues. Ultimately, the careful integration of 

appropriate feature extraction methods and strategic feature 

selection not only refines the performance of AI and ML 

models but also holds the potential to revolutionize medical 



diagnostics, offering more accurate, efficient, and clinically 

relevant results. 

Feature selection methods can be broadly classified into three 

main groups: filter methods, embedded methods, and 

wrapper methods. In filter methods, the relevance of features 

is assessed based on their statistical properties, and these 

methods operate independently of the machine learning 

algorithm. Notable techniques in this category include 

Variance Thresholding, which eliminates features with low 

variance to enhance informativeness; Correlation-based 

Methods, focusing on identifying and removing highly 

correlated features to reduce redundancy; and Univariate 

Feature Selection, which evaluates the relationship between 

each feature and the target variable independently. Embedded 

methods seamlessly integrate feature selection into the model 

training process. Prominent techniques within this group 

include LASSO (Least Absolute Shrinkage and Selection 

Operator) [10], which penalizes the absolute size of 

coefficients, forcing some to be precisely zero and effectively 

selecting features. Additionally, Tree-based Methods, such as 

Random Search [11] and Gradient Boosting [12], inherently 

perform feature selection by assigning importance scores to 

features. Regularized Regression Models also fall into this 

category, incorporating penalties for the number of features 

selected during model training. Wrapper methods assess the 

performance of different feature subsets by iteratively 

training and testing the model with each subset. Commonly 

used techniques in this group include Forward Selection, 

which incrementally adds features one at a time, selecting the 

one that most improves model performance; Backward 

Elimination, which starts with all features and removes them 

one at a time based on their impact on model performance; 

and Recursive Feature Elimination (RFE) [13], which 

systematically eliminates the least important features until the 

desired number is achieved. 

The MammoWave device offers the capability to provide the 

complex S21 parameters within a frequency range of 1 to 9 

GHz, employing a 5 MHz sampling, resulting in 1601 

individual frequencies. The judicious selection of optimal 

frequencies is crucial for the development of a precise and 

dependable breast cancer detection model. This paper focuses 

on leveraging metaheuristic algorithms to strategically 

identify these optimum frequencies. Within the realm of 

feature selection (here frequency selection), metaheuristic 

algorithms operate through an iterative process of selecting, 

evaluating, and modifying subsets of features to identify the 

most effective subset based on a predefined objective or 

fitness function. These algorithms are categorized as wrapper 

methods, as they employ the performance of a specific 

machine learning model (the black box) to guide the search 

for an optimal subset of features. Prominent metaheuristic 

algorithms such as Genetic Algorithms (GA) [14], Simulated 

Annealing (SA) [14], and Particle Swarm Optimization 

(PSO) [15] are employed as iterative optimization 

techniques. These algorithms facilitate the exploration of a 

vast solution space, aiding in the identification of an optimal 

solution. 

To ensure the robustness of the proposed model, the method 

is executed through five separate runs. In each run, 20% of 

the entire dataset is randomly selected as test data, while the 

remaining data undergoes evaluation using a 4-fold cross-

validation technique embedded within an optimization 

procedure to identify the optimum features (frequencies). A 

novel cost function is introduced, emphasizing a balanced 

rate between sensitivity and specificity while maximizing 

accuracy. This novel approach demonstrates a substantial 

increase in sensitivity and specificity rates, reaching up to 

60%, marking a significant milestone for the MammoWave 

device. Moreover, SVM with linear kernel has been used as 

classifier to develop a robust model.  

In the subsequent sections of the paper, the proposed method, 

data collection process, and the newly introduced cost 

function are elaborated upon in the following section. 

Subsequently, the outcomes obtained from the 

experimentation will be thoroughly discussed in Section III. 

Finally, Section IV will encapsulate the conclusion derived 

from the findings, providing a comprehensive summary and 

insights into the implications of the study. 

II. PROPOSED METHOD 

A. Data Collection and Preparation 

MammoWave (UBT Srl, Italy) is comprised of a 

transmitter (Tx) and a receiver (Rx) antenna as shown in Fig. 

1. These antennas are positioned around a cup, ensuring the 

breast's secure enclosure during the scanning process. The 

system, divided into five sections, defines transmitter 

positions with 72-degree steps, executing meticulous 

movements for optimal data acquisition. With 10 unique 

positions for the transmitter and 80 for the receiver, 

comprehensive spatial coverage around the breast is 

achieved. Throughout the scanning process, the transmitter 

emits microwave radiation ranging from 1 to 9 GHz, utilizing 

a 5 MHz sampling rate and covering 1601 different 

frequencies. The receiver captures complex S21, forming a 

matrix (80 × (1601 × 2)), denoted as MTx. This extensive 

dataset, encompassing both real and imaginary values, 

supports an AI-driven method for assessing breast health. Ten 

MTxs are employed in this method to make informed 

decisions, distinguishing between different breast conditions. 

The amalgamation of microwave technology and artificial 

intelligence heralds a revolutionary and nuanced approach to 

breast screening. 

Let S21 = a + jb, where a and b are real and imaginary parts 

of S21 respectively.  Since S21 parameters are complex 

numbers, magnitude, phase, real part and imaginary part can 

be used as raw data. Since, the magnitude of a complex 

number combines information about both amplitude and 

phase in a single scalar value. It represents the overall 

strength of the signal, irrespective of its phase. In many cases, 

the magnitude is more robust to phase variations and can 

simplify the representation. Equations (1) to (3) represent 

how raw data is generated by using the complex S21 

parameters.  

𝑆21
Magnitude

=  √𝑎2 +  𝑏2                                                               (1) 

Moreover, for each MTx we have: 

𝑀𝑇𝑥 =

{
𝑀𝑇𝑥(𝑖 , 𝑗) = real(𝑆21

𝑖,𝑗
) for odd columns of 𝑀𝑇𝑥

𝑀𝑇𝑥(𝑖 , 𝑗 + 1) = imag(𝑆21
𝑖,𝑗

) for even columns of 𝑀𝑇𝑥
, i 

= 1,2, …, 80 and j = 1, 3, …, 3201                                   (2) 

 

where, i is the index of the receiver’s position and j is the 

frequency sampling corresponding to each transmitter. By 



considering (1) and (2), the magnitude matrix MGx is a (80 × 

1601) matrix that for each individual position of Tx, we have:  

 

𝑀𝐺𝑥(𝑖 , 𝑘) =  √𝑀𝑇𝑥(𝑖 , 𝑗)2 +  𝑀𝑇𝑥(𝑖 , 𝑗 + 1)2, 𝑘 =
1,2, … , 1601                                                                         (3) 

 

As a result, for each individual breast scanning we have 10 

magnitude matrixes 𝑀𝐺𝑥 =  {𝑀𝐺𝑥1, 𝑀𝐺𝑥2, ⋯ , 𝑀𝐺𝑥10  } as 

raw data for using to develop AI-based diagnosis model.   
 

A dataset of 1024 breasts from 526 women was 
considered; such women participated in two MammoWave 
clinical trials (Clinicaltrials.gov identifiers NCT04253366 and 
NCT05300464) carried out at different EU Hospitals. For 
each breast, we used as reference standard the radiologic study 
output integrated with histological one (if deemed necessary 
by the responsible investigator); thus, the reference standard 
allows to classify breasts in non-healthy (NH, i.e. breasts with 
malignant findings) or healthy (H, i.e. breasts without any 
findings or with benign findings). Specifically, reference 
standard led to 161 NH and 863 H (of which, 436 breasts were 
without any findings and 427 breasts with benign findings).  

B. Proposed Cost Function 

In medical applications, the evaluation of ML-based 

models often involves using the F1-score, which is the 

harmonic mean of precision and sensitivity (recall). While the 

F1-score considers both false positives and false negatives, it 

lacks an explicit mechanism to ensure a balance between 

sensitivity and specificity. Our research focuses on 

developing a breast cancer detection model tailored for the 

MammoWave device, with a key emphasis on achieving 

balanced rates. To address this, we propose a dynamic cost 

function (7) that ranges between 2 and zero. The first term of 

the cost function is designed to minimize overall error, while 

the second term is dedicated to enforcing a balance between 

sensitivity and specificity rates. This dual-term structure acts 

as a corrective measure, penalizing the cost function when it 

tends towards unbalanced rates. This approach enhances the 

model's capacity to maintain equilibrium between sensitivity 

and specificity, aligning with the specific requirements of our 

breast cancer detection goals. 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                                    (4) 

Sensitivity =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                        (5) 

Specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                           (6) 

Cost function = (2 − (Sensitivity + Specificity)) +

 |Sensitivity − Specificity|                                             (7) 

 
where, TP and TN are True Positive (breast with cancer 
correctly classified as NH) and True Negative (healthy breast 
correctly classified as H), respectively. 

C. Frequency Selection 

As mentioned before, MammoWave device provides raw 

data across the 1 to 9 GHz frequency range, presented in the 

form of an 80 by 1600 magnitude matrix for each Tx position. 

This format allows for the segmentation of the entire 

frequency range into eight distinct sub-bands (SBs), as 

depicted in Fig. 2. Each sub-band comprises 200 frequency 

values. For instance, sub-band five (SB 5) spans frequencies 

from 5 to 6 GHz (5000 to 6000 MHz). Observations indicate 

that frequency values within each sub-band exhibit closely 

related behavior, particularly concerning machine learning 

performance. Consequently, the process of selecting 

frequencies can be considered synonymous with selecting 

sub-bands. It means that for an Optimization Algorithm (OA) 

search space dimension is eight and the optimum solution 

could be one of the sub-bands or a combination of them. 

Moreover, we used binary representation for selecting 

procedure. For example [0 0 0 1 0 0 1 1] means sub-bands 4, 

7, and 8 are selected.   

Experimental results were conducted through 5 distinct runs. 

In each run, 20% of the available data was randomly set aside 

as test data, comprising 173 H and 32 NH samples. In each 

iteration of the optimization algorithm, as shown in Fig. 3. 4-

fold cross-validation is employed to assess the combination 

of SBs (selected SBs) suggested by the optimization 

algorithm. Within each fold, unselected frequencies are 

removed from MGx matrices, and a feature extraction 

method is applied to remained raw data. Subsequently, 

standard (Z-score) normalization is utilized to normalize the 

data, followed by the evaluation of a trained SVM classifier 

using validation data. The average cost function across the 4 

folds serves as the performance metric for the selected 

frequencies. 

Finally, during the testing phase, blind test data were assessed 

by the trained classifiers using the training data. Frequency 

selection, feature extraction, and normalization were applied 

prior to the evaluation. 

III. RESULTS AND DISCUSSION 

Five independent runs were conducted, incorporating a 
20% test data subset randomly selected from both H and NH 
cases. This approach was employed to ensure the robust 
evaluation of the proposed method's performance. Initially, 
the entire frequency information was considered, signifying 
no specific selection, and various feature extraction methods 
and classifiers were employed to identify the optimal 
combination of classifier and features for microwave data. 
Subsequently, in the ensuing stage, the obtained results were 
scrutinized using the proposed method, considering the 
suggested cost function and F1-score for a comprehensive 
performance assessment. 

 

 

Fig.1. (a) MammoWave prototype, (b) sketch of MammoWave’s scanning 
configuration showing the hole and antenna positions, (c) transmitting and 

receiving antenna configurations. 



 

Fig.2. Sub-bands in the available range of frequencies. 

 

 
Fig. 3. Overall framework for k-fold validation in training step of the 

proposed method. 
 

A. No Frequency Selection 

As previously mentioned, the primary classifier for the 
proposed model is the SVM classifier with a linear kernel. 
However, the identification of the best and most suitable 
features for this classifier necessitates further investigation. In 
this section, a comprehensive exploration was undertaken by 
considering the entire frequency information, and four well-
known feature extraction methods (SF, PCA, tSNE, and 
UMAP) were selected for breast cancer detection. It is 
important to note that for SF features, statistical information 
such as mean, median, standard deviation, minimum, 
maximum, variance, summation, and entropy values were 
employed. Furthermore, experimental results reveal that the 
optimal number of components for PCA, tSNE, and UMAP in 
this study are 70, 2, and 4, respectively. Fig. 4 illustrates a box-
chart depicting the sensitivity, specificity, and accuracy of 
these features. 

Overall, SF exhibits higher rates compared to others, while 
PCA demonstrates more balanced results. SF, with its superior 
performance in detecting cancer cases, showcases 
commendable accuracy and sensitivity rates. Conversely, 
tSNE excels in identifying H breasts. Given that SF boasts 
higher accuracy and sensitivity rates with an acceptable 
specificity rate, it was selected as the feature for the remainder 
of this paper.  

B. Proposed Method 

Five distinct runs were executed during the proposed 
optimization approach to determine the optimal Optimization 
Algorithm (OA) for breast cancer detection. Table I provides 
a comprehensive comparison of the performance achieved by 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), and Simulated Annealing (SA). The evaluation metrics 
utilized for assessing the models included the proposed cost 
function and (1 - F1-score), reflecting the error of the models. 
The results indicate that when employing (1 - F1-score), 
optimization algorithms tend to prioritize frequencies that 
enhance the model's ability to accurately detect Malignant 
cases, resulting in a lower specificity rate. Conversely, the 
proposed cost function, in most cases, compels the OAs to 
seek a more balanced performance. A closer examination of 
the selected SBs reveals that SB1 consistently appears in all 
optimum solutions, SB2 significantly contributes to 
increasing sensitivity, and SB8 demonstrates its effectiveness 
in elevating specificity. Consequently, utilizing GA as the 
optimization technique alongside the proposed cost function 
yields a more balanced, robust, and reliable model. 

Furthermore, Fig. 5 illustrates the enhanced performance of 
the proposed breast cancer detection model through the 
proposed frequency selection method. The confusion 
matrices' results represent the average rates across five 
separate runs on testing data. In an ideal scenario, True 
Positives (TP) should be 32, and True Negatives (TN) should 
be 173. A comparison of these two confusion matrices reveals 
that TN and False Negatives (FN), associated with sensitivity, 
remain constant, while there is a noteworthy increase in the 
TP rate. This translates to a 10% improvement in specificity 
and, consequently, accuracy.  

 

Fig. 4. Performance of different feature extraction methods and classifiers by 
considering whole frequency information.  

 

 

Fig. 5. Comparison between confusion matrices. (a) without frequency 
selection, (b) with frequency selection.  



TABLE I. Performance of different optimization techniques by using the 
proposed cost function and (1 - F1-score) as an error function. 

Error 
function 

OA Error 
Selected 

SBs 
Acc Sen Spe 

Proposed 
Cost function 

(between 0-2) 

GA 0.783 11000001 64.49 61.25 65.08 

PSO 0.936 11000100 53.85 62.50 52.25 

SA 0.937 10000101 52.88 53.12 52.84 

1 - F1-score 

(between 0-1) 

GA 0.641 11000011 54.05 81.87 48.90 

PSO 0.689 11110100 51.80 69.37 48.55 

SA 0.692 11111110 53.36 66.25 50.98 

 

C. Comarision With Other Methods 

As illustrated in Fig. 6, the presented method stands out 
for its superior performance when juxtaposed with alternative 
techniques. Despite the acceptable levels of accuracy and 
specificity demonstrated by LASSO and random search, their 
sensitivity rates exhibit notable shortcomings. Moreover, 
while Grid Search manages to produce balanced rates, it still 
falls behind the exceptional performance achieved by the 
proposed method. However, it is essential to acknowledge 
certain drawbacks associated with both LASSO and grid 
search. LASSO, although proficient in feature selection and 
regularization, is susceptible to model instability when dealing 
with multicollinearity, potentially leading to unreliable 
coefficient estimates. Additionally, LASSO tends to 
arbitrarily select one variable among highly correlated ones, 
potentially overlooking valuable information. 

On the other hand, grid search, while systematically exploring 
hyperparameter combinations, can be computationally 
expensive and inefficient, particularly in high-dimensional 
spaces. The exhaustive search across a predefined parameter 
grid may result in extended processing times, making it less 
practical for large datasets or resource-intensive scenarios. In 
contrast, the proposed method excels in addressing these 
challenges. It not only outperforms LASSO and grid search in 
terms of sensitivity, specificity, and accuracy but also 
demonstrates an optimal balance among these metrics. This 
underscores the method's efficacy and robustness in achieving 
a comprehensive and well-rounded performance in breast 
cancer detection. The ability to overcome the limitations of 
LASSO and grid search positions the proposed approach as a 
promising advancement in enhancing the precision and 
reliability of breast cancer diagnostic models. 

 

 

Fig. 6. Comparison between proposed model and well-known selection 
strategies.  

IV. CONCLUSION 

In conclusion, the MammoWave device emerges as a 
novel tool in breast cancer detection, particularly in younger 
age groups. This paper has advanced the MammoWave 
technology by developing an optimized model that 
incorporates heuristic algorithms and leverages the SVM 
classifier with a linear kernel. The overarching focus has been 
on addressing key issues related to features, error function, 
and frequency selection. 

By exploring the information provided by MammoWave in 
the 1 to 9 GHz range, our findings underscore the efficacy of 
statistical features in achieving higher sensitivity rates while 
maintaining competitive accuracy compared to other feature 
types. The subsequent step involved the introduction of a 
novel error function, assessing the model's performance based 
on a fair trade-off between sensitivity and specificity. A 
comprehensive study of various metaheuristic algorithms 
revealed that Genetic Algorithm outperformed other 
optimization approaches, pinpointing sub-bands 1, 2, and 8 as 
the optimal frequency contents for developing the SVM-based 
breast cancer detection model. This strategic frequency 
selection resulted in a notable enhancement, elevating the 
specificity rate to 65%, while maintaining a robust sensitivity 
level at approximately 61%. The optimization achieved 
through GAs in identifying these optimal frequency contents 
underscores their efficacy in fine-tuning the MammoWave 
device for heightened precision in breast cancer detection. It 
is worth noting that these results are very promising for 
MammoWave, because these results have been obtained with 
low amount of data and we believe that they could be 
improved in the future.  

Furthermore, the integration of a proposed cost function 
contributed to the model's reliability, robustness, and 
accuracy. While prioritizing sensitivity through F1-score and 
allowing optimization algorithms to emphasize frequencies 
sensitive to malignant cases, the cost function introduced a 
crucial balance, enhancing the overall dependability of the 
model. In essence, this research not only advances 
MammoWave's performance, but also provides a 
comprehensive framework for developing precise and 
trustworthy breast cancer detection models. 
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