103 research outputs found

    Can Lessons from Public Health Disease Surveillance Be Applied to Environmental Public Health Tracking?

    Get PDF
    Disease surveillance has a century-long tradition in public health, and environmental data have been collected at a national level by the U.S. Environmental Protection Agency for several decades. Recently, the Centers for Disease Control and Prevention announced an initiative to develop a national environmental public health tracking (EPHT) network with “linkage” of existing environmental and chronic disease data as a central goal. On the basis of experience with long-established disease surveillance systems, in this article we suggest how a system capable of linking routinely collected disease and exposure data should be developed, but caution that formal linkage of data is not the only approach required for an effective EPHT program. The primary operational goal of EPHT has to be the “treatment” of the environment to prevent and/or reduce exposures and minimize population risk for developing chronic diseases. Chronic, multifactorial diseases do not lend themselves to data-driven evaluations of intervention strategies, time trends, exposure patterns, or identification of at-risk populations based only on routinely collected surveillance data. Thus, EPHT should be synonymous with a dynamic process requiring regular system updates to a) incorporate new technologies to improve population-level exposure and disease assessment, b) allow public dissemination of new data that become available, c) allow the policy community to address new and emerging exposures and disease “threads,” and d) evaluate the effectiveness of EPHT over some appropriate time interval. It will be necessary to weigh the benefits of surveillance against its costs, but the major challenge will be to maintain support for this important new system

    An Application Of Machine Learning Methods To The Derivation Of Exposure-Response Curves For Respiratory Outcomes

    Get PDF
    Analyses of epidemiological studies of the association between short-term changes in air pollution and health outcomes have not sufficiently discussed the degree to which the statistical models chosen for these analyses reflect what is actually known about the true data-generating distribution. We present a method to estimate population-level ambient air pollution (NO2) exposure-health (wheeze in children with asthma) response functions that is not dependent on assumptions about the data-generating function that underlies the observed data and which focuses on a specific scientific parameter of interest (the marginal adjusted association of exposure on probability of wheeze, over a grid of possible exposure values). We show that this approach provides a more nuanced summary of the data than more typical statistical methods used in air pollution epidemiology and epidemiological studies in general

    Causal Inference in Longitudinal Studies with History-Restricted Marginal Structural Models

    Get PDF
    Causal Inference based on Marginal Structural Models (MSMs) is particularly attractive to subject-matter investigators because MSM parameters provide explicit representations of causal effects. We introduce History-Restricted Marginal Structural Models (HRMSMs) for longitudinal data for the purpose of defining causal parameters which may often be better suited for Public Health research. This new class of MSMs allows investigators to analyze the causal effect of a treatment on an outcome based on a fixed, shorter and user-specified history of exposure compared to MSMs. By default, the latter represents the treatment causal effect of interest based on a treatment history defined by the treatments assigned between the study\u27s start and outcome collection. Beyond allowing a more flexible causal analysis, the proposed HRMSMs also mitigate computing issues related to MSMs as well as statistical power concerns when designing longitudinal studies. We develop three consistent estimators of HRMSM parameters under sufficient model assumptions: the Inverse Probability of Treatment Weighted (IPTW), G-computation and Double Robust (DR) estimators. In addition, we show that the assumptions commonly adopted for identification and consistent estimation of MSM parameters (existence of counterfactuals, consistency, time-ordering and sequential randomization assumptions) also lead to identification and consistent estimation of HRMSM parameters

    The Causal Effect of Recent Leisure-Time Physical Activity on All-Cause Mortality Among the Elderly

    Get PDF
    We analyze data collected as part of a prospective cohort study of elderly people living in and around Sonoma, CA, in order to estimate, for each round of interviews, the causal effect of leisure-time physical activity (LTPA) over the past year on the risk of mortality in the following two years. For each round of interviews, this effect is estimated separately for subpopulations defined based on past exercise habits, age, and whether subjects have had cardiac events in the past. This decomposition of the original longitudinal data structure into a series of point-treatment data structures corresponds to an application of history-adjusted marginal structural models as introduced by van der Laan et al. (2005). We propose five different estimators of the parameter of interest, based on various combinations of the usual G-computation, inverse-weighting, and double robust approaches for the two layers of missingness corresponding to the treatment mechanism and right-censoring by drop-out. The models for all nuisance parameters required by these different estimators are selected data-adaptively. For most subpopulations, our analyses suggest that high leisure-time physical activity reduces the subsequent two-year mortality risk by about 50%. Among populations of elderly people aged 75 years or older, these effect estimates are generally significant at the 0.05 level. Notably, our analyses also identify one subpopulation that is estimated to experience an increase in mortality risk when exercising at a higher level, namely subjects aged 75 years or older with previous cardiac events and no history of habitual exercise (RR: 2.33, 95% CI: 0.76-4.35)

    Comparison of the Inverse Probability of Treatment Weighted (IPTW) Estimator With a Naïve Estimator in the Analysis of Longitudinal Data With Time-Dependent Confounding: A Simulation Study

    Get PDF
    A simulation study was conducted to compare estimates from a naïve estimator, using standard conditional regression, and an IPTW (Inverse Probability of Treatment Weighted) estimator, to true causal parameters for a given MSM (Marginal Structural Model). The study was extracted from a larger epidemiological study (Longitudinal Study of Effects of Physical Activity and Body Composition on Functional Limitation in the Elderly, by Tager et. al [accepted, Epidemiology, September 2003]), which examined the causal effects of physical activity and body composition on functional limitation. The simulation emulated the larger study in terms of the exposure and outcome variables of interest-- physical activity (LTPA), body composition (LNFAT), and physical limitation (PF), but used one time-dependent confounder (HEALTH) to illustrate the effects of estimating causal effects in the presence of time-dependent confounding. In addition to being a time-dependent confounder (i.e. predictor of exposure and outcome over time), HEALTH was also affected by past treatment. Under these conditions, naïve estimates are known to give biased estimates of the causal effects of interest (Robins, 2000). The true causal parameters for LNFAT (-0.61) and LTPA (-0.70) were obtained by assessing the log-odds of functional limitation for a 1-unit increase in LNFAT and participation in vigorous exercise in an ideal experiment in which the counterfactual outcomes were known for every possible combination of LNFAT and LTPA for each subject. Under conditions of moderate confounding, the IPTW estimates for LNFAT and LTPA were -0.62 and -0.94, respectively, versus the naïve estimates of -0.78 and -0.80. For increased levels of confounding of the LNFAT and LTPA variables, the IPTW estimates were -0.60 and -1.28, respectively, and the naïve estimates were -0.85 and -0.87. The bias of the IPTW estimates, particularly under increased levels of confounding, was explored and linked to violation of particular assumptions regarding the IPTW estimation of causal parameters for the MSM

    Causal Inference in Epidemiological Studies with Strong Confounding

    Get PDF
    One of the identifiabilty assumptions of causal effects defined by marginal structural model (MSM) parameters is the experimental treatment assignment (ETA) assumption. Practical violations of this assumption frequently occur in data analysis, when certain exposures are rarely observed within some strata of the population. The inverse probability of treatment weighted (IPTW) estimator is particularly sensitive to violations of this assumption, however, we demonstrate that this is a problem for all estimators of causal effects. This is due to the fact that the ETA assumption is about information (or lack thereof) in the data. A new class of causal models, causal models for realistic individualized exposure rules (CMRIER), introduced in van der Laan and Petersen (2007), is based on dynamic interventions. CMRIER generalize MSM, and their parameters remain fully identifiable from the observed data, even when the ETA assumption is violated, if the dynamic interventions are set to be realistic. Examples of such realistic interventions are provided. We argue that causal effects defined by CMRIER may be more appropriate in many situations, particularly those with policy considerations. Through simulation studies, we examine the performance of the IPTW estimator of the CMRIER parameters in contrast to that of the MSM parameters. We also apply the methodology to a real data analysis in air pollution epidemiology to illustrate the interpretation of the causal effects defined by CMRIER

    The self-reported health of U.S. flight attendants compared to the general population

    Get PDF
    Background: Few studies have examined the broad health effects of occupational exposures in flight attendants apart from disease-specific morbidity and mortality studies. We describe the health status of flight attendants and compare it to the U.S. population. In addition, we explore whether the prevalence of major health conditions in flight attendants is associated with length of exposure to the aircraft environment using job tenure as a proxy. Methods: We surveyed flight attendants from two domestic U.S. airlines in 2007 and compared the prevalence of their health conditions to contemporaneous cohorts in the National Health and Nutrition Survey (NHANES), 2005-2006 and 2007-2008. We weighted the prevalence of flight attendant conditions to match the age distribution in the NHANES and compared the two populations stratified by gender using the Standardized Prevalence Ratio (SPR). For leading health conditions in flight attendants, we analyzed the association between job tenure and health outcomes in logistic regression models. Results: Compared to the NHANES population (n =5,713), flight attendants (n = 4,011) had about a 3-fold increase in the age-adjusted prevalence of chronic bronchitis despite considerably lower levels of smoking. In addition, the prevalence of cardiac disease in female flight attendants was 3.5 times greater than the general population while their prevalence of hypertension and being overweight was significantly lower. Flight attendants reported 2 to 5.7 times more sleep disorders, depression, and fatigue, than the general population. Female flight attendants reported 34% more reproductive cancers. Health conditions that increased with longer job tenure as a flight attendant were chronic bronchitis, heart disease in females, skin cancer, hearing loss, depression and anxiety, even after adjusting for age, gender, body mass index (BMI), education, and smoking. Conclusions: This study found higher rates of specific diseases in flight attendants than the general population. Longer tenure appears to explain some of the higher disease prevalence. Conclusions are limited by the cross-sectional design and recall bias. Further study is needed to determine the source of risk and to elucidate specific exposure-disease relationships over time

    Differential respiratory health effects from the 2008 northern California wildfires: A spatiotemporal approach

    Get PDF
    AbstractWe investigated health effects associated with fine particulate matter during a long-lived, large wildfire complex in northern California in the summer of 2008. We estimated exposure to PM2.5 for each day using an exposure prediction model created through data-adaptive machine learning methods from a large set of spatiotemporal data sets. We then used Poisson generalized estimating equations to calculate the effect of exposure to 24-hour average PM2.5 on cardiovascular and respiratory hospitalizations and ED visits. We further assessed effect modification by sex, age, and area-level socioeconomic status (SES). We observed a linear increase in risk for asthma hospitalizations (RR=1.07, 95% CI=(1.05, 1.10) per 5µg/m3 increase) and asthma ED visits (RR=1.06, 95% CI=(1.05, 1.07) per 5µg/m3 increase) with increasing PM2.5 during the wildfires. ED visits for chronic obstructive pulmonary disease (COPD) were associated with PM2.5 during the fires (RR=1.02 (95% CI=(1.01, 1.04) per 5µg/m3 increase) and this effect was significantly different from that found before the fires but not after. We did not find consistent effects of wildfire smoke on other health outcomes. The effect of PM2.5 during the wildfire period was more pronounced in women compared to men and in adults, ages 20–64, compared to children and adults 65 or older. We also found some effect modification by area-level median income for respiratory ED visits during the wildfires, with the highest effects observed in the ZIP codes with the lowest median income. Using a novel spatiotemporal exposure model, we found some evidence of differential susceptibility to exposure to wildfire smoke
    corecore