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The Causal Effect of Recent Leisure-Time
Physical Activity on All-Cause Mortality

Among the Elderly

Oliver Bembom, Mark J. van der Laan, and Ira B. Tager

Abstract

We analyze data collected as part of a prospective cohort study of elderly peo-
ple living in and around Sonoma, CA, in order to estimate, for each round of
interviews, the causal effect of leisure-time physical activity (LTPA) over the past
year on the risk of mortality in the following two years. For each round of in-
terviews, this effect is estimated separately for subpopulations defined based on
past exercise habits, age, and whether subjects have had cardiac events in the
past. This decomposition of the original longitudinal data structure into a se-
ries of point-treatment data structures corresponds to an application of history-
adjusted marginal structural models as introduced by van der Laan et al. (2005).
We propose five different estimators of the parameter of interest, based on vari-
ous combinations of the usual G-computation, inverse-weighting, and double ro-
bust approaches for the two layers of missingness corresponding to the treatment
mechanism and right-censoring by drop-out. The models for all nuisance param-
eters required by these different estimators are selected data-adaptively. For most
subpopulations, our analyses suggest that high leisure-time physical activity re-
duces the subsequent two-year mortality risk by about 50%. Among populations
of elderly people aged 75 years or older, these effect estimates are generally sig-
nificant at the 0.05 level. Notably, our analyses also identify one subpopulation
that is estimated to experience an increase in mortality risk when exercising at a
higher level, namely subjects aged 75 years or older with previous cardiac events
and no history of habitual exercise (RR: 2.33, 95% CI: 0.76-4.35).
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1 Introduction

A substantial body of epidemiological research indicates that recent and current physical ac-
tivity in the elderly are associated with reductions in cardiovascular morbidity and mortality
and improvement in or prevention of metabolic abnormalities that place elderly people at
risk for these outcomes (CDC, 1989; van Dam et al., 2002; Lee et al., 2003; Esposito et al.,
2003; Rosano et al., 2005). Data from studies of exercise physiology indicate that older, so-
called master athletes retain a high level of fitness (Thomas et al., 1985). However, there are
few epidemiological studies in general populations that have examined the relative contribu-
tions of habitual past and current physical activity on future morbidity and mortality. This
issue is of relevance since there is increasing data that unhealthy lifestyles (lack of exercise,
obesity, etc.) do increase the risk of metabolic abnormalities that are pro-atherogenic (Hu
et al., 2001; Jacobs and Pereira, 2004; Kraus et al., 2002).

Tager et al. (1998) followed a group of people aged 55 years and older living in and around
Sonoma, CA, over a time period of about ten years as part of a community-based longitudi-
nal study of physical activity and fitness (Study of Physical Performance and Age Related
Changes in Sonomans - SPPARCS). Our goal in analyzing the data that were collected as
part of this study is to estimate the causal effect of recent leisure-time physical activity
(LTPA) on all-cause mortality in an elderly population. We are particularly interested in
estimating how this effect is modified by past exercise habits, age, and whether subjects
have had cardiac events in the past. This would allow us to recommend levels of leisure-time
physical activity that are tailored to these characteristics of a given person that put them at
high risk for all-cause mortality.

2 Data structure

The SPPARCS study is a prospective cohort study of 2,092 people aged 55 years and older
living in and around Sonoma, CA. Subjects were enrolled in 1993-1994 and followed through
2004. Each of the study participants was interviewed up to four times, with interviews
spaced roughly two and a half years apart. Let M0 denote the time at which the baseline
interview was conducted. For 1 ≤ t ≤ 3, let Mt give the time at which follow-up interview t
was conducted.

At each interview, a questionnaire was used to assess leisure-time physical activity during
the year preceding the interview. At the same time, a number of covariates were measured
that might confound the relationship between leisure-time physical activity and mortality.
These potential confounders include a lifetime profile of participation in leisure-time physical
activity, a composite physical functioning score, self-rated health, smoking status, depression,
BMI, living arrangement, as well as the presence or absence of a number of medical conditions
(see tables 8 and 9 in the appendix for more details). Furthermore, subjects were asked
whether they had previously experienced any of a number of cardiac events, a covariate that
will be of interest to us as a potential effect modifier.

We define our treatment variable of interest A1(t) as an indicator for leisure-time physical
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activity of 22.5 METs per week or greater during the year preceding interview t. This level of
activity represents the minimum desired level of activity to maintain health, corresponding
to brisk walking for 30 minutes at least five times a week. Since leisure-time physical activity
is measured over the entire year preceding a given interview, it is possible that some of the
potential confounders measured at the same interview have in fact been influenced by the
subjects physical activity level over the past year. In particular, self-rated health, smoking
status, and BMI are measured right at the interview; physical functioning is measured over
the 1-month period preceding the interview; depression is measured over the 1-week period
preceding the interview; and the presence of chronic health conditions is measured over
the entire time period since the last interview. Hence, we cannot make the usual temporal
ordering assumption that the covariates measured at a given time point precede the treatment
variable at that time point and thus are not affected by that treatment variable. To be able
to estimate causal effects, however, we have to define a data structure that respects such
a temporal ordering assumption. We do so by defining L(t) as the collection of covariates
measured at interview t− 1 rather than at interview t.

We define the collection of covariates preceding treatment at baseline, L(0), as follows.
At baseline, subjects were also asked to compare their current self-rated health to their self-
rated health one year ago (better, same, worse). We use this information in conjunction
with the subject’s self-rated health at baseline to impute self-rated rated health one year
prior to the baseline interview, which can now be included in L(0). Furthermore, current
smokers were asked when they began smoking, and ex-smokers were asked when they quit
smoking. We use this information in conjunction with smoking status at baseline to impute
smoking status one year prior to baseline to obtain another member of L(0). Based on
available questionnaire information, we are likewise able to impute the presence of lifetime
cardiac events as well as a number of non-cardiac chronic health conditions one year prior to
baseline. In this way, we can construct a collection of baseline covariates L(0) that is known
to precede baseline treatment A1(0) containing all covariates included in L(t) for later time
points except for the following: depression, physical functioning, living arrangement, and
BMI.

Our effect modifiers of interest are defined as follows:

V1(t) = I(Habitual exercise before study baseline)

V2(t) = I(cardiac event prior to interview t− 1)

V3(t) = I(Age one year prior to interview t ≥ 75)

While the variables V1, V2, and V3 are available for all study participants, a number of the
remaining variables in L(t) are recorded incompletely. The missing values of such a variable
Lj(t) are imputed as follows: If past measurements for Lj(t) are available, use the most
recent past measurement to impute Lj(t). Otherwise, if future measurements of Lj(t) are
available, use the closest future measurement to impute Lj(t). Otherwise, use a typical value
of Lj(t) over the entire dataset to impute Lj(t). For continuous Lj(t), we use the median
value of Lj(t); for categorical Lj(t), we use the mode of Lj(t). Lj(t) is then re-defined as
Lj(t) ≡ (Lj(t), ∆Lj(t)), where ∆Lj(t)) is the indicator that Lj(t) has been imputed rather
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than measured. Tables 10 and 11 in the appendix summarize the results of this imputation
procedure.

In this study, the treatment variable A1(t) may be missing at a given time point for one
of two reasons: Either a subject has refused to participate in a given round of interviews, or
a subject has not given information about his or her recent LTPA in spite of participating
in an interview. The latter case happens most frequently when subjects choose to take the
mail survey or a phone interview rather than the full home visit evaluation. We denote by D
the time of the earliest interview with a missing value for A1(t). We enforce censoring of the
treatment process to be monotone by discarding any data that might have been collected at
times t > D and denote the censoring process by A2(t) = I(D < Mt). Enforcing monotone
censoring is necessary to avoid a practical violation of the ETA assumption since subjects
who have refused to participate in a given round of interviews are very unlikely to return for
the next round (there are only five such cases in the whole dataset). As a consequence, we
are led to discard 87 out of 6,298 (1.4%) recorded treatment measurements that occurred
after a previous missing treatment measurement.

At a given time point t, data become available in the following order. Based on the
definition of L(t) as the covariates measured at interview t − 1, L(t) will be available for
any subject that has not dropped out or died by interview t− 1. For any subjects who have
not died by interview t, we next observe A2(t), i.e. whether or not they have dropped out
at the current interview t. If this is not the case, we then record their treatment A1(t). Let
T̃1 ≡ T ∧C denote the time of the first occurrence of death and the end of the study period.
Vital status data are available up to time T̃1 for all subjects, even if they have dropped out
prior to T̃1. Let T̃2 ≡ T ∧ C ∧ D denote the time of the first occurrence of death, end of
study, and drop-out. The treatment and covariate processes are then right-censored by T̃2

and observed only through T̃2−, the time point just prior to T̃2. The observed data thus
consist of n i.i.d. copies of

O = (T̃1 = T ∧ C, ∆ = I(T < C), T̃2 = T ∧ C ∧D, L̄(T̃2−), Ā(T̃2−))

= (T̃1, ∆, T̃2, L(0), A2(0), A1(0), ..., L(T̃2−), A2(T̃2−), A1(T̃2−)),

where A(t) ≡ (A2(t), A1(t)).

3 Assumptions

Within the counterfactual framework for causal inference, we think of this observed data
structure as a coarsened version of a full-data structure X that we would ideally have liked
to observe. This full-data structure X consists of the collection of counterfactual covari-
ate processes X̄ā1 = (Tā1 , L̄ā1(Tā1)) with ā1 ranging over the set A1 of possible treatment
regimens. The observed data are now derived from the full data by two sequential coars-
ening steps. The first step is given by Y = ϕ1(X, A1) = (Ā1, X̄Ā1

), i.e. Y contains only
that particular covariate process X̄ā1 corresponding to the actually observed treatment Ā1

(consistency assumption). The second step consists of censoring of this covariate process by
drop-out D and end of study C: O = ϕ2(Y, C, D) = (T̃1, ∆, T̃2, Ā1(T̃2−)), X̄Ā1

(T̃2−)).
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We rely on the following additional standard assumptions that are necessary for causal
effects to be identifiable from the observed data. First, we make the temporal ordering as-
sumption Lā1(t) = Lā1(t−1)(t) that states that covariates measured at time t are only affected
by treatments at earlier time points. Our definition of L(t) ensures that this assumption is
met.

Next, we rely on the Sequential Randomization Assumption (SRA) for both the treatment
mechanism and the drop-out mechanism. For the treatment mechanism, this assumption
states that the choice A1(t) of treatment at time t is only affected by past treatment Ā1(t−1)
and measured covariates L̄(t):

g1(a1(t)|X, Ā1(t− 1)) ≡ Pr(A1(t) = a1(t)|X, Ā1(t− 1)) = g1(a1|Ā1(t− 1), L̄(t))

This corresponds to assuming that there are no unmeasured confounders of the relationship
between treatment and mortality. Given the collection of potential confounders that we have
measured, we are comfortable that this assumption is satisfied. We note that this assumption
appears weaker at t = 0 since L(0) does not contain all the potential confounders available
at later time points. The drop-out mechanism likewise satisfies the SRA if the decision A2(t)
to drop out at time t is only a function of past treatment Ā1(t− 1), past drop-out Ā2(t− 1),
and measured covariates L̄(t):

g2(a2(t)|X, Ā(t− 1)) ≡ Pr(A2(t) = a2(t)|X, Ā(t− 1)) = g2(a2(t)|Ā(t− 1), L̄(t))

Lastly, we make the Experimental Treatment Assignment (ETA) Assumption that states
that there are essentially no values of the covariate process for which treatment or drop-out
are assigned in a deterministic fashion:

Pr(A1(t) = a1| Ā1(t− 1), L̄(t)) > 0 FX − a.e. for a1 ∈ {0, 1}

and
Pr(A2(t) = 0| Ā(t− 1), L̄(t), A2(t− 1) = 0) > 0 PFx,g1 − a.e.

This assumption is necessary for causal effects to be non-parametrically identifiable. Inverse-
weighting based estimators rely crucially on this assumption since they do not posit a model
for the full-data likelihood. Likelihood-based estimators rely entirely on extrapolation based
on the posited model if this assumption is violated.

4 Parameter of interest

We are interested in estimating the causal effect of high leisure-time physical activity over the
past year compared to lower activity on the risk of mortality over an appropriate time period,
say the following two years. As mentioned above, we are particularly interested in estimating
how this effect is modified by past exercise habits, age, and whether subjects have had cardiac
events in the past. Since we have collected longitudinal data on our study participants, we
might want to compare counterfactual mortality risks corresponding to treatment regimens
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that prescribe high or low physical activity during the year preceding each of the interviews,
with participants allowed to follow their observed activity patterns between interviews. The
time at which follow-up interviews were conducted, however, varies greatly among the study
participants, with the period between two interviews ranging from 274 to 1,410 days. In
particular, this means that some study participants have had follow-up interviews within 2
years of the last interview whereas others have not. This makes counterfactual outcomes
indexed by longitudinal treatment regimens as those described above difficult to interpret,
especially since the timing of interviews might be related to a subject’s characteristics. We
therefore decide to consider counterfactual mortality outcomes that are only indexed by
one treatment decision, essentially converting the longitudinal data structure into a point-
treatment data structure. Thus we might be interested in estimating the parameter

θ(a, v) = Pr(Ta ≤ t0 | V (0) = v),

where t0 is the desired time frame of mortality, say 2 years, for all values of a and v.
For the sake of precision, however, we would still like to make use of the data that were

collected at the follow-up interviews. This can be accomplished by considering corresponding
parameters for later interviews and thus letting θ be indexed by the time j of the interview:

θ(a, v, j) = Pr(TĀ(j−1)a ≤Mj + t0 | TĀ(j−1) ≥Mj, V (j) = v)

Here TĀ(j−1)a denotes the survival time for a subject whose LTPA regimen through interview
j−1 corresponds to his or her observed activity pattern Ā(j−1) and whose physical activity
at interview j was set to level a. For j > 0, this parameter gives the v-specific risk of
mortality for the hypothetical scenario under which all study participants are allowed to
follow a natural treatment regimen prior to interview j before then being assigned, for one
year, to the treatment level of interest, a. Note that this counterfactual risk of mortality
is conditional on having survived to interview j, but not on not having dropped out of the
study before then.

We might now posit a model according to which θ(a, v, j) does not vary as a function of
j, but corresponds to a common counterfactual mortality risk β(a, v):

θ(a, v, j) = β(a, v), j = 1, . . . , 4 (1)

We note, however, that the parameter β(a, v) is not defined if this assumption fails. We
therefore follow the approach developed in Neugebauer and van der Laan (2005b) to view
1 only as a working model that is used to define a smooth version of θ(a, v, j). This allows
us to keep the model for the data-generating distribution non-parametric. Specifically, we
define the parameter of interest β(a, v) as a particular weighted average of the j-specific
counterfactual mortality risk:

β(a, v) =
1∑4

j=1 n(j, v)

4∑
j=1

n(j, v)θ(a, v, j)

= arg min
β(a,v)

4∑
j=1

n(j, v)
[
θ(a, v, j)− β(a, v)

]2
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where n(j, v) =
∑n

i=1 I(TĀ(j−1),i ≥ Mji, Vi(j) = v). The second equation shows that β(a, v)
can be viewed as a projection of the j-specific counterfactual mortality risks onto the space
of functions of a and v alone, corresponding to the model 1, with weights given by n(j, v). If
model 1 holds, then β(a, v) is equal to the common counterfactual mortality risk θ(a, v, j), j =
1, . . . , 4. This assumption may not be so unrealistic since counterfactual mortality risks are
stratified by age so that the aging of our cohort is, at least to some extent, taken into account.
In the absence of this assumption, β(a, v) becomes slightly harder to interpret, but at least
remains a perfectly well-defined parameter.

We note that the approach we take here for pooling information across different time
points can be viewed as an application of history-adjusted marginal structural models as
introduced by van der Laan et al. (2005). These models have been proposed primarily for
the purpose of studying time-dependent effect modification in longitudinal studies with a
temporally meaningful baseline. van der Laan et al., for example, consider a cohort of AIDS
patients that are enrolled in the study as soon as they lose virologic suppression. This allows
one to place a new AIDS patients who has lost virologic suppression some known time t ago
with respect to the time scale of the study and to recommend treatment decisions that have
been derived specifically for patients whose virus has been non-suppressed for this amount of
time. In the current context, however, the study baseline has no intrinsic temporal meaning
since study participants are enrolled at no particular point in their lives. This precludes us
from placing new subjects from the same study population with respect to the time scale of
the study and to base recommendations specifically on that temporal placement. Instead,
we apply the same models and estimators as those proposed by van der Laan et al. for the
sake of gaining precision by pooling information across several time points.

5 Estimators

We propose the following five estimators for the parameter β(a, v).

5.1 G-computation

In the absence of censoring, the G-computation estimator for θ(a, v, j) would be given by

θn(a, v, j) = Pn

{
Q1n(a, j)

∣∣∣TĀ(j−1) ≥Mj, V (j) = v
}

where we use the notation

Pnf(O) ≡
n∑

i=1

f(Oi)

for the empirical mean, and Q1n(a, j) = P̂ r(TĀ(j−1)a ≤ Mj + t0|TĀ(j−1) ≥ Mj, L̄(j), Ā1(j))
is an estimate of the conditional risk of mortality in the time period following interview j
given the observed treatment and covariate processes through interview j among subjects
who were alive at interview j.

6
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In the presence of right-censoring by drop-out, Q1(a, j) is still identifiable from the data
since drop-out is assumed to be independent of the full data given the observed past so that

Pr(TĀ(j−1)a ≤Mj + t0|TĀ(j−1) ≥Mj, L̄(j), Ā1(j)) =

Pr(TĀ(j−1)a ≤Mj + t0|TĀ(j−1) ≥Mj, L̄(j), Ā1(j), A2(j) = 0)

Hence we can simply estimate Q1(a, j) among those subjects who still remain in the study at
interview j. The empirical mean of Q1n(a, j), however, can only be evaluated over those same
subjects, a subset of the target population that is unlikely to be representative of the whole
population, making the estimator infeasible. This problem can be addressed by simulating
realizations of the observed data structure through time point j for those subjects who have
dropped out prior by time point j. The empirical mean of Q1n(a, j) can then be taken over
this partially imputed data set Ob to obtain an estimate θb

n(a, v, j) of θ(a, v, j). Repeating
this procedure a sufficient number of times and averaging over b leads to the G-computation
estimator

θG−comp
n (a, v, j) =

B∑
b=1

θb
n(a, v, j)

An estimate of β(a, v) can then obtained as

βG−comp
n (a, v) =

1∑4
j=1 n(j, v)

4∑
j=1

n(j, v)θG−comp
n (a, v, j). (2)

Note that only the treatment and covariate processes need to be simulated since the failure
process is observed through time T̃1 for all study participants. Realization of the treatment
process can be generated based on an estimate g1n of the treatment mechanism. To generate
realizations of the covariate process, we need to estimate the distributions Q2(j) = Pr(L(j) |
L̄(j − 1), Ā(j − 1)), j = 1, . . . , 4. We here use a dimension reduction approach based on
propensity scores (Rosenbaum and Rubin, 1983) to simplify this task. Let

e1(t) = e1(L̄(t− 1), Ā(t− 1), A2(t)) ≡ Pr(A1(t) = 1| L̄(t− 1), Ā(t− 1), A2(t))

e2(t) = e2(L̄(t− 1), Ā(t− 1)) ≡ Pr(A2(t) = 1| L̄(t− 1), Ā(t− 1))

be the propensity scores corresponding to the treatment mechanism and the drop-out mech-
anism, respectively. If the original data structure satisfies the assumption of no unmeasured
confounders, then the same is true for the lower-dimensional data structure

R = (T̃1, ∆, T̃2, e1(0), e2(0), A(0), ..., e1(T̃2−), e2(T̃2−), A(T̃2−))

in which the covariate process L(t) consist of only two components at each time point. We
can thus estimate the nuisance parameters Q2(j) = Pr(L(j)| L̄(j − 1), Ā(j − 1)) for this
lower-dimensional data structure. Since the dimension reduction step relies on estimation of
g2, the estimate βG−comp

n (a, v) is consistent only if all of the nuisance parameters Q1, Q2, g1,
and g2 are estimated consistently.
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5.2 G-comp-IPCW

An alternative approach to salvaging the simple point treatment estimator is based on
inverse-probability-of-censoring weights that give small weights to subjects who are unlikely
to have been censored by interview j and large weights to subjects who have not dropped
out by interview j, but would have been likely to do so, given their history. This approach
leads to the estimator

θG−comp−IPCW
n (a, v, j) = Pn

{ I(Ā2(j) = 0)

g2n(Ā2(j) = 0|X)
Q1n(a, j)

∣∣∣TĀ(j−1) ≥Mj, V (j) = v
}

,

This estimator corresponds to the estimating function

D(a, v, j | θ(a, v, j)) = I(TĀ(j−1) ≥Mj, V (j) = v)
I(Ā2(j) = 0)

g2(Ā2(j) = 0|X)
Q1(a, j)− θ(a, v, j),

which is unbiased since

E
[
I(TĀ(j−1) ≥Mj, V (j) = v)

I(Ā2(j) = 0)

g2(Ā2(j) = 0|X)
Q1(a, j)

]
− θ(a, v, j) =

E
[ I(Ā2(j) = 0)

g2(Ā2(j) = 0|X)
Q1(a, j)

∣∣∣TĀ(j−1) ≥Mj, V (j) = v
]
− θ(a, v, j) =

E
[
E

[ I(Ā2(j) = 0)

g2(Ā2(j) = 0|X)
Q1(a, j)

∣∣∣X]∣∣∣TĀ(j−1) ≥Mj, V (j) = v
]
− θ(a, v, j) =

E
[ Q1(a, j)

g2(Ā2(j) = 0|X)
E

[
I(Ā2(j) = 0)

∣∣∣X]∣∣∣TĀ(j−1) ≥Mj, V (j) = v
]
− θ(a, v, j) =

E
[ Q1(a, j)

g2(Ā2(j) = 0|X)
g2(Ā2(j) = 0|X)

∣∣∣TĀ(j−1) ≥Mj, V (j) = v
]
− θ(a, v, j) =

E
[
Q1(a, j)

∣∣∣TĀ(j−1) ≥Mj, V (j) = v
]
− θ(a, v, j) = 0

An estimate of β(a, v) can then obtained as

βG−comp−IPCW
n (a, v) =

1∑4
j=1 n(j, v)

4∑
j=1

n(j, v)θG−comp−IPCW
n (a, v, j). (3)

This estimate is consistent only if both the nuisance parameters Q1 and g2 are estimated
consistently.
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5.3 IPTW-IPCW estimator

An alternative to the two likelihood-based approaches described above consists of applying
the general estimating-function methodology for semi-parametric missing-data models sat-
isfying coarsening at random (CAR) described in van der Laan and Robins (2003). This
approach is based on first finding estimating functions that could be used if the data were
completely observed and then mapping them into estimating functions that can be used for
the actually observed, coarsened data structure, as described in Theorem 1.3 of van der Laan
and Robins. In the present context, we will have to carry out this mapping step twice, first
to map estimating functions for the completely-observed data structure X into estimating
functions for the data structure Y , and then to map those into estimating functions for the
observed data structure O. At first glance, Theorem 1.3 of van der Laan and Robins appears
not to apply to the initial mapping step since the counterfactuals considered here, allowing
subjects to follow their observed treatment through time point j − 1, make the parameter
of interest a function of the treatment mechanism as well as the full data structure. The
hypothesis of the theorem requiring the parameter of interest to be a function of the full
data structure alone can still be seen to hold, however, by conceiving for each time point j of
a full data structure Xj that is equivalent to a point-treatment full data structure in which
the baseline covariates contain L̄(j) as well as Ā(j − 1) (van der Laan et al., 2005).

An unbiased full-data estimating function for β(a, v) is given by

D(X, β(a, v)) =
4∑

j=1

Dj(X, β(a, v)) =
4∑

j=1

I1(j, v)
[
I(TĀ(j−1)a ≤ t0j)− β(a, v)

]
,

where I1(j, v) = I(TĀ(j−1) ≥ Mj, V (j) = v) and t0j = Mj + t0. Since our model for the
data-generating distribution is non-parametric, the tangent space is locally saturated, the
orthogonal complement of the full-data nuisance tangent space is given by

ΛFull,⊥ = {aD(X, β(a, v) : a ∈ R},

and D(X, β(a, v)) is in fact an efficient estimating function. The simplest mapping from
this full-data estimating function to an observed-data estimating function consists of two
sequential applications of weights, inverse-probability-of-treatment weights (IPTW) followed
by inverse-probability-of-censoring weights (IPCW). The resulting j-specific IPTW-IPCW
estimating function is given by

DIPTW−IPCW
j (O, β(a, v)|g1, g2) = Dj(X, β(a, v))

I(A1(j) = a)

g1j(a|X)

I(Ā2(j) = 0)

g2(0|X)
.

The estimating equation

0 =
n∑

i=1

DIPTW,IPCW
j (Oi, β

IPTW−IPCW
n (a, v)|g1, g2)
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can be written as

0 =
n∑

i=1

f IPTW−IPCW (Oi)− βIPTW−IPCW
n

n∑
i=1

gIPTW−IPCW (Oi),

where

f IPTW−IPCW (Oi) =
4∑

j=1

I1,i(j, v)I(TĀ(j−1)a,i ≤ t0j,i)
I(A1,i(j) = a)

g1j(a|Xi)

I(Ā2,i(j) = 0)

g2(0|Xi)

gIPTW−IPCW (Oi) =
4∑

j=1

I1,i(j, v)
I(A1,i(j) = a)

g1j(a|Xi)

I(Ā2,i(j) = 0)

g2(0|Xi)
.

Hence the estimator βIPTW−IPCW
n (a, v) is given by

βIPTW−IPCW
n (a, v) =

∑n
i=1 f IPTW−IPCW (Oi)∑n
i=1 gIPTW−IPCW (Oi)

(4)

This estimator is consistent only if the two nuisance parameters g1 and g2 are estimated
consistently.

5.4 DR-IPCW estimator

Alternatively, we may apply a double robust mapping for the first coarsening step, corre-
sponding to the treatment mechanism, followed by an inverse-weighting mapping for the
second coarsening step, corresponding to the drop-out mechanism. For this purpose, we
first obtain the j-specific double-robust estimating function in the absence of censoring by
projecting the corresponding IPTW estimating function

DIPTW
j (Y, β(a, v)|g1) = I1(j, v)

{I(A(j) = a)

g1j(a|X)
I(TĀ(j−1)a ≤ t0j)− β(a, v)

}
,

onto the orthogonal complement of the nuisance tangent space Λj
1 associated with the treat-

ment mechanism at time j. Λj
1 consists of all functions of L̄(j) and Ā(j) with conditional

mean zero given L̄(j), Ā(j − 1), and A2(j):

Λj
1 = {ϕ(L̄(j), Ā(j))− E[ϕ(L̄(j), Ā(j)) | L̄(j), Ā(j − 1), A2(j)] : ϕ}

The projection of DIPTW
j onto the orthogonal complement of Λj

1 can be obtained by sub-

tracting from DIPTW
j its projection onto Λj

1. This latter projection can be computed by first
finding the conditional expectation of DIPTW

j given L̄(j) and Ā(j) and then subtracting the
expectation of that quantity over the conditional distribution of A1(j) given L̄(j), Ā(j − 1),
and A2(j). This leads to the following double robust estimating function in the absence of
censoring:

DDR
j (Y, β(a, v)|g1, Q1) = I1(j, v)

{I(A(j) = a)

g1j(a|X)

[
I(TĀ(j−1)a ≤ t0j)−Q1(a, j)

]
+Q1(a, j)−β(a, v)

}
,

10
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where, as before, Q1(a, j) = Pr(TĀ(j−1)a ≤ t0j|TĀ(j−1) ≥ Mj, L̄(j), Ā(j)). Applying an
inverse-weighting mapping to this estimating function, we obtain the j-specific DR-IPCW
estimating function

DDR,IPCW
j (O, β(a, v)|g1, Q1, g2) = DDR

j (Y, β(a, v)|g1, Q1)
I(Ā2(j) = 0)

g2(Ā2 = 0|Y )

The estimating equation

0 =
n∑

i=1

DDR,IPCW
j (Oi, β

DR−IPCW
n (a, v)|g1, Q1)

can be written as

0 =
n∑

i=1

fDR−IPCW (Oi)− βDR−IPCW
n

n∑
i=1

gDR−IPCW (Oi),

where
fDR−IPCW (Oi) =

4∑
j=1

I1,i(j, v)
[I(A1,i(j) = a)

g1j(a|Xi)
[I(TĀ(j−1)a,i ≤ t0j,i)−Q1,i(a, v)] + Q1,i(a, v)

]I(Ā2,i(j) = 0)

g2(0|Xi)

and

gDR−IPCW (Oi) =
4∑

j=1

I1,i(j, v)
I(Ā2,i(j) = 0)

g2(0|Xi)
.

Hence the estimator βDR−IPCW
n (a, v) is given by

βDR−IPCW
n (a, v) =

∑n
i=1 fDR−IPCW (Oi)∑n
i=1 gDR−IPCW (Oi)

. (5)

This estimator is consistent if g2 as well as least one of g1 and Q1 are estimated consistently.

5.5 DR-DR estimator

Lastly, we may apply a double robust mapping to DDR
j (Y, β(a, v)|g1, Q1) in the hope of

obtaining an estimating function that is orthogonal to both the treatment and the drop-out
mechanism. This is accomplished by subtracting from DDR−IPCW

j its projection onto the

nuisance tangent spaces Λl
2, l = 1, . . . , j, that are associated with the drop-out mechanisms

at all time points l up to j. Λl
2 consists of all functions of L̄(l), Ā(l − 1), and A2(l) with

conditional mean zero given L̄(l) and Ā(l − 1):

Λj
2 = {ϕ(L̄(l), Ā(l − 1), A2(l))− E[ϕ(L̄(l), Ā(l − 1), A2(l)) | L̄(l), Ā(l − 1)] : ϕ}

11

http://biostats.bepress.com/ucbbiostat/paper214



The projection of DDR−IPCW
j onto Λl

1 can be obtained by first finding the conditional expec-

tation of DDR−IPCW
j given L̄(l), Ā(l− 1), and A2(l) and then subtracting the expectation of

that quantity over the conditional distribution of A2(l) given L̄(l) and Ā(l − 1). This leads
to the estimating function

DDR,DR
j (O, β(a, v)|g1, Q1, g2, Q2) = DDR,IPCW

j (O, β(a, v)|g1, Q1, g2)

−
j∑

l=1

[
Q31(a, v, j, l)− β(a, v)Q32(v, j, l)

]
dM2(j)

where

Q32(v, j, l) = E
[
I1(j, v)

I(Ā2(j) = 0)

g2(Ā2 = 0|X)

∣∣∣L̄(l), Ā(l), A2(l)
]
,

Q31(a, v, j, l) = E
[
DDR,IPCW

j

∣∣∣L̄(l), Ā(l), A2(l)
]

+ β(a, v)Q32(v, j, l),

dM2(j) = I(A2(j) = 0)− g2j(0|Y ).

The expectations Q31(a, v, j, l) and Q32(v, j, l) must be estimated numerically by Monte-
Carlo simulation that relies as before on a data reduction step based on propensity scores.
In this case, however, we need to generate realizations of the entire observed data structure
so that we also rely on an estimate of the full failure process, a nuisance parameter we denote
by Q4.
The estimating equation

0 =
n∑

i=1

DDR,DR
j (Oi, β

DR−DR
n (a, v)|g1, Q1, g2, Q2)

can be written as

0 =
n∑

i=1

fDR−DR(Oi)− βDR−DR
n

n∑
i=1

gDR−DR(Oi),

where

fDR−DR(Oi) =

4∑
j=1

{
I1,i(j, v)

[I(A1,i(j) = a)

g1j(a|Xi)
[I(TĀ(j−1)a,i ≤ t0j,i)−Q1,i(a, v)] + Q1,i(a, v)

]I(Ā2,i(j) = 0)

g2(0|Xi)

−
j∑

l=1

Q21,i(a, v, j, l)dM2(j)
}

and

gDR−DR(Oi) =
4∑

j=1

{
I1,i(j, v)

I(Ā2,i(j) = 0)

g2(0|Xi)
−

j∑
l=1

Q22,i(v, j, l)dM2(j)
}
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Hence the estimator βDR−DR
n (a, v) is given by

βDR−DR
n (a, v) =

∑n
i=1 fDR−DR(Oi)∑n
i=1 gDR−DR(Oi)

. (6)

This estimator is consistent if g2 as well as least one of g1 and Q1 are estimated consistently.
It is not double robust with respect to the drop-out mechanism since estimation of Q2 itself
relies on estimation of g2.

5.6 Nuisance parameter models

All nuisance parameters are modelled data-adaptively and separately for each time point
j. The treatment and drop-out mechanisms g1 and g2 consist of regressions of an indicator
variable on L̄(j) and Ā1(j−1). These two nuisance parameters are modelled data-adaptively
using the polyclass() function of a model selection algorithm based on polynomial spline
functions (Kooperberg et al., 1997). The nuisance parameter Q2(j) consists of regressions of
continuous propensity scores on L̄(j− 1) and Ā(j− 1). These are estimated data-adaptively
using the polymars() function based on the same algorithm.

The nuisance parameter Q1(j, a) consists of a regression of a failure indicator on L̄(j)
and Ā1(j) and could thus also be modelled using polyclass(). Models selected in this way,
however, are likely to contain neither the treatment variable A1(j) nor any interaction terms
between A1(j) and the effect modifiers of interest V (j). Such models are unsatisfactory
since they do not allow us to examine the impact of A1(j) on the risk of mortality and
the dependence of this impact on V (j). To explicitly acknowledge that we are interested
in estimating the effect of A1(j) on the risk of mortality within strata of V (j), we might
hence fit separate data-adaptive regression models for each stratum of V (j) and each value
of A. This is problematic, however, for the following reason. Suppose (L̄(j), Ā1(j − 1))
contains an important confounder that is very strongly correlated with A1(j) and that has
an independent effect on the risk of mortality. Then clearly this variable should be included
in a model predicting mortality risk from A1(j) and (L̄(j), Ā1(j − 1)) to adequately control
for confounding. Within groups defined by A1(j), this variable will show very little variation,
however, and thus will contribute little to the accurate estimation of mortality risk. Model
selection procedures are thus unlikely to include this variable in the chosen regression model.
We therefore adopt the following two-step approach: First, we fit a data-adaptive regression
model to estimate the risk of mortality as a function of (L̄(j), Ā1(j − 1)) alone, excluding
A1(j) from the set of candidate explanatory variables. Then we manually add A1(j), the
interaction terms A1(j)×V (j), as well as any terms in V (j) that have not yet been selected
to the identified model. The first step guarantees that no important confounders are omitted
due to strong correlations with A1(j). The second step then ensure that the model contains
all terms of interest.

The nuisance parameter Q4, representing the failure process, is estimated in an analogous
fashion. We first obtain a data-adaptive estimate of the hazard of failure as a function of
(L̄(t), Ā1(t − 1)) alone by using the hare() function of the same model selection algorithm
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as above. We then add the same terms as for the model of Q1 and fit the corresponding Cox
proportional-hazards model to obtain the desired estimate of Q4.

5.7 Comparison of the five estimators

Table 1 compares these five estimators with respect to their dependence on the various
nuisance parameters.

Estimator g1(a1|X) Q1(a, j) g2(a2|Y ) Q2(j)
G-comp X X X X

G-comp-IPCW X X
IPTW-IPCW X X
DR-IPCW X ←→ X X
DR-DR X ←→ X X

Table 1: Comparison of estimators in their dependence on nuisance parameters. An estima-
tor relies on each nuisance parameter marked by X. A X←→ Xsignifies that the estimator
depends on consistent estimation of at least one of the two corresponding nuisance parame-
ters.

We note that consistency of the G-computation estimator implies consistency of all four
other estimators, i.e. these estimators are guaranteed to be consistent whenever the G-
computation estimator is consistent. Likewise, consistency of either the G-comp-IPCW
estimator or the IPTW-IPCW estimator implies consistency of the DR-IPCW and DR-DR
estimators. These last two estimators are hence maximally robust with respect to mis-
specification of nuisance parameter models among the candidate estimators we consider
here.

5.8 Inference

Inference for all five candidate estimators can be based on the bootstrap. For the three
estimating-function based estimators, we may also turn to arguments based on influence
curves. For the DR-DR estimator, the influence curve is straightforward to derive, assuming
that all nuisance parameters are estimated consistently. In that case, the estimating function
lies in the orthogonal complement of the nuisance tangent space so that the corresponding
influence curve is given by an appropriately scaled version of the estimating function itself:

ICDR−DR
0 (O, β(a, v)|g1, Q1, g2, Q2) = c−1DDR−DR(O, β(a, v)|g1, Q1, g2, Q2)

where

c = − ∂

∂β(a, v)
E

[
D(O, β(a, v))

]∣∣∣
β(a,v)=β0(a,v)

= E
[
gDR−DR(O)

]
.
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Thus

√
n(βDR−DR

n − β0) =
1√
n

n∑
i=1

ICDR−DR
0 (Oi, β(a, v)|g1, Q1, g2, Q2) + oP (1)

and in particular √
n(βDR−DR

n − β0)
D

=⇒ N(0, Σ)

where
Σ = V ar(ICDR−DR

0 (O, β(a, v)|g1, Q1, g2, Q2)).

The influence curve can be estimated by plugging in estimates for the parameter of interest as
well as the nuisance parameter. The scaling factor c can be estimated by the empirical mean
of gDR−DR(O). This leads to an estimate of the variance-covariance matrix Σ so that inference
can then be based on the asymptotic normal distribution displayed above. Inference obtained
in this way relies however on the assumption that the nuisance parameters are estimated at
a sufficiently fast rate. This assumption holds if nuisance parameters are estimated within
parametric models, but becomes somewhat questionable when data-adaptive model selection
techniques are employed. Hence we suspect that influence-curve based inference may be
optimistic in this case.

The influence curve of the IPTW-IPCW and DR-IPCW estimators are not given by a
simple scaling of the estimating function itself since that estimating function is not orthogonal
to all nuisance parameters. The estimating function of the IPTW-IPCW estimator can be
obtained by projecting the scaled version

ICIPTW−IPCW
0 (O, β(a, v)|g1, g2) = c−1DIPTW−IPCW (O, β(a, v)|g1, g2)

onto the orthogonal complement of the nuisance tangent spaces associated with the treatment
and drop-out mechanism. The estimating function of the DR-IPCW estimator can likewise
be obtained by projecting the scaled version

ICDR−IPCW
0 (O, β(a, v)|g1, Q1, g2) = c−1DDR−IPCW (O, β(a, v)|g1, Q1, g2)

onto orthogonal complement of the nuisance tangent space for the drop-out mechanism.
Since projections are norm-reducing, the variance of the true influence curves is no smaller
than the variance of these preliminary influence curves. Hence they can generally be used
for conservative inference about the parameter of interest. In the present context of data-
adaptively selected nuisance parameter models, however, it is unclear how this conservative
behavior might balance with the optimistic behavior due to second-order terms. We investi-
gate this question by comparing confidence intervals for the three estimating-function based
estimators that are based on the bootstrap to those based on the influence curve arguments
presented here.
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6 Results

6.1 Study population

Table 2 summarizes the number of subjects remaining in the study at each time point as well
as the number of subjects lost to death and drop-out since the previous interview. Table 3
characterizes the various populations of interest we obtain when we pool subjects across the
four different time points. Participants under the age of 75 with no previous cardiac events
make up more than half of the entire sample, but account for less than 20% of all observed
deaths. Participants with previous cardiac events on the other hand represent slightly more
than 15% of the sample, but account for more than 30% of deaths. On they whole, the
sample is fairly well balanced between the two LTPA regimens under consideration, with
slightly more participants in the high-activity group. Among young subjects, cardiac events
appear more commonly in the male population than in the female population, with the
gap becoming less pronounced in the older population. As to be expected, populations
with previous cardiac events as well as older populations are characterized by a decrease in
physical functioning scores as well as in self-perceived health as compared to younger and
healthier populations.

Table 2: Subjects lost to death and drop-out as well as remaining population at each time
point.

Interview Deaths Drop-outs Population
1 0 0 2074
2 89 237 1748
3 139 253 1356
4 76 182 1098
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6.2 Selected nuisance parameter models

Tables 12 through 22 in the appendix summarize the selected nuisance parameter models.
The treatment model for the baseline interview consists mainly of measures of physical
activity between age 40 and the beginning of the study along with age, sex, and an indicator
for a decline in physical activity over the five to ten years preceding the study. Treatment
models for subsequent interviews focus very heavily on LTPA measurements from previous
interviews, incorporating in each case the entire available LTPA history. Other variables
taken into account by these models are physical functioning scores, BMI, and age. Since
past LTPA measurements as well physical functioning scores are not available at the first
time point, but appear very prominently in the treatment models for later time points, we
suspect that the SRA is more closely approximated for later time points in the study than
for earlier ones.

The selected models for the drop-out mechanism are all fairly simple, with old age being
the only recurring risk factor for drop-out. Since no other major predictors of mortality nor
LTPA appear in these models, we suspect that adjusting for right-censoring by drop-out will
only have a minor impact on our estimates.

The models selected for the two-year risk of mortality focus primarily on available physical
functioning measurements, with decreased scores associated, as expected, with an increased
mortality risk. Other variables selected include sex, an indicator for chronic disease, and
an indicator for a decline in physical activity in the five to ten years preceding the study.
Again we are led to suspect that the SRA is more closely approximated for later time points
than for the baseline interview since physical functioning scores are not available for the
first time point. Note that the absence of observed failures in some of the populations of
interest at the third and fourth time points leads to large coefficient estimates with even
larger standard errors for some of the interaction terms in the corresponding models. This is
not a problem here since the estimated coefficients only represent nuisance parameters that
are not immediately used to obtain estimates for the parameters of interest.

6.3 Mortality and relative risk estimates

Figures 1 and 2 as well as table 6 in the appendix show the estimated counterfactual mortality
risks for the two different LTPA levels and the various subpopulations of interest. Figures 3
and 4 as well as table 7 in the appendix summarize these estimates in the form of relative
risks of mortality for comparing high-level activity to low-level activity.

On the whole, the five estimators agree fairly well with each other, with two notable
exceptions among subjects aged 75 years and older with previous cardiac events. Among such
subjects with a history of habitual exercise, the three estimating-function based estimates
for the high-activity LTPA regimen lie around 35% while the two likelihood-based estimates
are closer to 15%. Among the same subjects with no history of habitual exercise, the three
estimating-function based estimates for the low-activity LTPA regimen lie around 20% while
the two likelihood-based estimates are closer to 13%.

As described above in section 5.7, the DR-IPCW and DR-DR estimators are more robust
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than the two likelihood-based estimators in the sense that consistency of either of the latter
two estimators implies consistency of the former two estimators, but not vice versa. Recall
also that the DR-DR estimator, just like the DR-IPCW estimator, relies on a consistent
estimate of the drop-out mechanism g2 since estimation of the additional nuisance parameter
Q2 itself relies on estimation of g2. The DR-DR estimator is hence no more robust than the
DR-IPCW estimator. If Q2 is estimated consistently, the DR-DR estimator can typically be
expected to be more efficient than the DR-IPCW estimator. In the present case, however, we
note that the DR-DR estimator appears to be more variable than the DR-IPCW estimator,
suggesting that Q2 is in fact not estimated consistently. This may not be too surprising
considering that estimation of Q2 is based on simulations that require a normality assumption
for all conditional covariate distributions as well as correct models for the treatment and
drop-out mechanisms that are needed for the propensity-score based dimension reduction.
Since the DR-IPCW estimator hence appears to enjoy the most desirable robustness and
efficiency properties among the estimators considered here, we will focus on results obtained
based on this approach.

The general pattern of estimated two-year mortality risks agrees well with what one
might expect on the basis subject-matter considerations. Thus, estimated mortality risk are
considerably lower in the young population than in the old population. Within a given age
group, participants with previous cardiac events are consistently estimated to be at higher
mortality risks than those without previous cardiac events. Likewise, subpopulations with
a history of habitual exercise are typically estimated to be at lower mortality risks than
comparable subpopulations with no such history. Two-year mortality risk estimates range
from 1% (95% CI: 0-3%) for young participants with a history of habitual exercise and no
previous cardiac events following the high-activity LTPA regimen to 36% (95% CI: 13-67%)
for old participants with no history of habitual exercise and previous cardiac events following
the high-activity LTPA regimen.

Among young subjects, our analysis suggests that high LTPA reduces the two-year risk
of mortality by about 40% (Table 7, rows 1-4). The relative risk estimates for young subjects
who reported past habitual exercise are very imprecise, undoubtedly due to the small number
of subjects and deaths in these groups (Table 3), with somewhat stronger statistical evidence
for a beneficial effect of LTPA on mortality in the remaining two groups. Since the point
estimates are similar across all four groups of young subjects, we are led to believe that this
effect is not modified in a significant way by previous cardiac events or past habitual exercise.

Among older subjects with a history of previous cardiac events, the point estimates for
the relative risk of mortality were lower and more precise than for the younger group (Table
7, rows 5-6). The findings for older subjects with previous cardiac events were somewhat
surprising (Table 7, rows 7-8). For those with a positive history of habitual exercise, the
relative risk of mortality for high-level LTPA compared to low-level LTPA was estimated as
0.35 (95% CI: 0.00-1.20). For those without a history of habitual exercise, the same relative
risk was estimated as 2.33 (95% CI: 0.76-4.35%). Apart from the possibility of representing
a chance increase in mortality risk, this finding could be due to the fact that high-level LTPA
was undertaken too soon after the non-fatal cardiac event and could have thus contributed
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to increased mortality in unconditioned individuals. We did not have data to address this
speculation.
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Figure 1: Mortality risk estimates with 95% bootstrap confidence intervals for age < 75. For
each subpopulation and estimator, the plot shows estimated counterfactual mortality risks
under low LTPA on the left and those under high LTPA on the right.
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Figure 2: Mortality risk estimates with 95% bootstrap confidence intervals for age ≥ 75. For
each subpopulation and estimator, the plot shows estimated counterfactual mortality risks
under low LTPA on the left and those under high LTPA on the right.
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Figure 3: Relative risk estimates with 95% bootstrap confidence intervals for age < 75.
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Figure 4: Relative risk estimates with 95% bootstrap confidence intervals for age ≥ 75.
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6.4 Assessing the validity of the ETA assumption

As mentioned in section 3, the desired causal effects are only non-parametrically identifi-
able if the Experimental Treatment Assignment assumption holds. In the absence of this
assumption, likelihood-based estimators rely entirely on extrapolation based on the posited
model for the full-data likelihood, and inverse-weighting based estimators typically provide
biased results. In fact, these latter estimators also perform poorly if the ETA assumption is
practically violated, i.e. if for some values of the baseline covariates, treatment is assigned
in a nearly deterministic fashion (Neugebauer and van der Laan, 2005a). In our analyses,
the IPTW-IPCW, DR-IPCW, and DR-DR estimators require that the treatment mechanism
satisfy the ETA assumption, while the G-computation and G-comp-IPCW estimators may
still yield consistent estimates through extrapolation; the G-comp-IPCW, IPTW-IPCW,
DR-IPCW, and DR-DR estimators all require that the drop-out mechanism satisfy the ETA
assumption, with only the G-computation estimator enjoying the potential of yielding con-
sistent estimates through extrapolation.

Wang et al. (2006) propose to use the following simulation-based approach to examine the
extent to which inverse-weighting-based estimates might be biased due to such a violation of
the ETA assumption: One first obtains estimates of both the full-data generating distribution
as well as the treatment and censoring mechanisms. These estimates now allow one to sim-
ulate realizations of the observed data structure. For this data-generating distribution, the
true values of the parameters of interest can be computed through G-computation. On the
other hand, one can obtain a sampling distribution of inverse-weighting-based estimates by
applying the inverse-weighting-based estimator to each simulated realization of the observed
data structure. Since the SRA is trivially satisfied in this case, any discrepancy between the
mean of these estimates and the true parameter value has to be due to a violation of the
ETA assumption.

We employ this approach here to explore the extent to which the DR-IPCW estimator
might be afflicted by bias due to such a violation of the ETA assumption. Figure 5 shows
representative sampling distributions of the DR-IPCW estimates of the log-odds of mortality
for some values of the stratification variables of interest. Table 4 summarizes the estimated
bias of the DR-IPCW point estimates for the two counterfactual mortality risks as well as the
relative risk of mortality. It also shows the relative risk estimate we obtain by correcting for
the estimated bias along with similarly bias-corrected confidence intervals; these corrected
confidence intervals ignore the variability due to estimating the bias and are hence only given
as a rough indication of the variability in the bias-corrected point estimates. The bias for
most estimates appears to be quite small, with somewhat larger estimated biases for the
relative risk estimates than the mortality estimates. Considerable biases of the relative risk
estimates are only observed for the population of younger subjects with a history of habitual
exercise. Since the relative risk estimates for this group of subjects are highly variable, the
1,000 iterations used for the simulation study may be too small to obtain an accurate estimate
of the mean the corresponding sampling distribution. We might speculate that the estimated
bias would decrease as we increase the number of iterations, but this is largely a moot point
since the high variability of these relative risk estimates already precludes us from placing
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much trust in them. Lastly, we note that in the majority of cases, the estimated bias for the
relative risk estimates is towards the null value of 1.0, with bias-corrected estimates further
away from 1.0. This simulation study thus suggests that most of the previous findings are
in fact supported by stronger evidence than is reflected in the initial confidence intervals.
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Figure 5: Sampling distribution of DR-IPCW estimates of the log-odds of mortality among
participants aged 75 years or older with previous cardiac events and habitual or non-habitual
exercise habits in the past under the two different LTPA regimens. The blue vertical line in-
dicates the mean of a given distribution, and the red vertical line indicates the true parameter
value for the simulation experiment.

26

Hosted by The Berkeley Electronic Press



T
ab

le
4:

E
st

im
at

ed
b
ia

s
of

D
R

-I
P

C
W

es
ti
m

at
es

(D
R

-I
P

C
W

p
oi

n
t

es
ti
m

at
es

,
b
ia

s
as

p
er

ce
n
ta

ge
of

p
oi

n
t

es
ti
m

at
es

)
fo

r
b
ot

h
co

u
n
te

rf
ac

tu
al

m
or

ta
li
ty

ri
sk

s
as

w
el

l
as

th
e

re
la

ti
ve

ri
sk

of
m

or
ta

li
ty

al
on

g
w

it
h

th
e

b
ia

s-
co

rr
ec

te
d

re
la

ti
ve

ri
sk

es
ti
m

at
e

w
it
h

si
m

il
ar

ly
co

rr
ec

te
d

95
%

co
n
fi
d
en

ce
in

te
rv

al
.

ol
d

ca
rd

h
ab

L
ow

L
T

P
A

H
ig

h
L
T

P
A

R
R

C
or

re
ct

ed
R

R
0.

00
07

(0
.0

29
1,

2.
41

%
)

-0
.0

00
3

(0
.0

15
9,

-1
.8

9%
)

-0
.0

19
(0

.5
47

,
-3

.5
%

)
0.

56
7

(0
.2

64
,
1.

28
6)

X
-0

.0
01

0
(0

.0
14

8,
-6

.7
6%

)
0.

00
08

(0
.0

09
7,

8.
25

%
)

0.
20

0
(0

.6
55

,
30

.5
%

)
0.

50
2

(0
.1

73
,
9.

63
6)

X
-0

.0
00

5
(0

.0
55

7,
-0

.9
0%

)
0.

00
37

(0
.0

33
4,

11
.0

8%
)

0.
01

5
(0

.5
99

,
2.

5%
)

0.
58

5
(0

.1
15

,
2.

62
3)

X
X

0.
00

08
(0

.0
82

9,
0.

97
%

)
0.

00
31

(0
.0

47
1,

6.
58

%
)

0.
57

2
(0

.5
68

,
10

0.
6%

)
0.

28
3

(0
.0

00
,

In
f)

X
-0

.0
00

7
(0

.1
22

3,
-0

.5
7%

)
0.

00
06

(0
.0

55
4,

1.
08

%
)

-0
.0

05
(0

.4
53

,
-1

.1
%

)
0.

45
8

(0
.2

52
,
0.

82
0)

X
X

-0
.0

05
8

(0
.1

57
7,

-3
.6

8%
)

0.
00

28
(0

.0
60

8,
4.

61
%

)
0.

03
5

(0
.3

86
,

9.
0%

)
0.

35
4

(0
.1

87
,
0.

69
1)

X
X

-0
.0

02
7

(0
.1

55
6,

-1
.7

4%
)

0.
00

33
(0

.3
63

0,
0.

91
%

)
-0

.0
07

(2
.3

33
,

-0
.3

%
)

2.
34

1
(0

.7
67

,
4.

36
2)

X
X

X
0.

00
06

(0
.1

97
8,

0.
30

%
)

0.
00

43
(0

.0
68

9,
6.

24
%

)
0.

00
7

(0
.3

48
,

1.
9%

)
0.

34
2

(0
.0

00
,
1.

18
1)

27

http://biostats.bepress.com/ucbbiostat/paper214



6.5 Mortality risk estimates stratified by interview

Recall that the parameter of interest β(a, v) is defined as a particular weighted average of
interview-specific counterfactual mortality risks θ(a, v, j). This pooling across time points
increases our effective sample size and thus improves the precision of our estimates. As
described in section 4, β(a, v) is well-defined even if θ(a, v, j) is not constant as a function of
j. The interpretation of β(a, v) would be simplified considerably, however, if this assumption
were to hold. Hence, we next look at the how the interview-specific mortality estimates
change as a function of time.

Figures 6 and 7 show the DR-IPCW estimates of counterfactual mortality risks separately
for each time point t. Considering the variability of these estimates, there appears to be little
evidence that mortality risks change as a function of time. Since the cohort ages throughout
the study period, one concern might be, for instance, that mortality risks rise steadily over
time in spite of the crude adjustment for age in the form of an indicator variable for age
greater than 75 years. The plots, however, do not reveal a consistent trend of this sort.

We note that among subjects at least 75 years of age with previous cardiac events but no
history of habitual exercise, the counterfactual mortality risk for high LTPA is estimated to
be considerably higher for the third time point than for all remaining time points. While the
data for time points two and four also support an increase in risk for the high-activity regimen,
with the first time point suggesting no change in risk, the magnitude of the estimated 2.33-
fold increase in risk appears to be driven primarily by the estimates for the third time point.
As noted previously, we have reason to believe that the SRA is more closely approximated
for the later time points, with treatment and failure models able to capitalize on more
abundant information regarding recent activity patterns and physical functioning levels. This
observation suggests that not too much weight should be given to the estimates for the first
time point, which stand alone in indicating no impact of increased LTPA on mortality risk.
We are still interested, however, in understanding what might explain the unusually high
mortality estimate for the high-activity regimen at the third time point. For this purpose,
table 3 characterizes the populations of subjects aged 75 years and older with previous
cardiac events and no history of habitual exercise for each of the four time points. The table
illustrates the confounding of the relationship between LTPA and mortality by physical
functioning levels, as NRB scores are sharply lower in the group of subjects exercising at less
than 22.5 METs a week. For time points one, two, and four, the crude mortality estimate
is considerably lower for the group of subjects exercising at a high level as compared to the
group of subjects exercising at a lower level. The adjusted estimates in figure 7 indicate that,
once we account for physical functioning scores and other confounders, this relationship is
in fact reversed. We now note that even the crude analysis finds a considerably higher risk
for the high-activity regimen at the third time point than at any of the other time points,
with the risk even exceeding that of the low-activity regimen for the same time point. This
suggests that the unusually high corresponding adjusted mortality estimate is unlikely to be
due to problems with our adjustment for confounding, but rather to the small numbers of
subjects encountered in this population for each given time point and the resulting instability
in the crude estimates.
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Figure 6: DR-IPCW mortaliy risk estimates with 95% bootstrap confidence intervals for
age < 75. For each subpopulation and time point, the plot shows estimated counterfactual
mortality risks under low LTPA on the left and those under high LTPA on the right.
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Figure 7: DR-IPCW mortality risk estimates with 95% bootstrap confidence intervals for
age ≥ 75. For each subpopulation and time point, the plot shows estimated counterfactual
mortality risks under low LTPA on the left and those under high LTPA on the right.
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6.6 Inference based on the influence curve

Figures 8 and 9 compare confidence intervals for the DR-IPCW estimates of the relative
risk of mortality based on the bootstrap to those based on influence curve arguments.
The latter confidence intervals were obtained through an application of the δ-method to
the theoretical limiting distribution of (βn(1, v), βn(0, v)), finding confidence intervals first
for log(β(1, v)/β(0, v)) and then transforming them to the original scale since the distri-
bution of log(β(1, v)/β(0, v)) approaches the limiting normal distribution faster than does
β(1, v)/β(0, v).

The largest discrepancies between the two different types of confidence intervals are seen
in the population of young subjects with a history of habitual exercise, where the influence-
curve confidence intervals appear to greatly underestimate the variability of the point es-
timates. We note that the estimates in this population are among the most variable ones,
suggesting that the amount of data they are based on may be too small for their distribution
to be well approximated by an asymptotic limiting distribution. Hence it is not surprising
that bootstrap confidence intervals perform better in these cases. For the remaining esti-
mates, the influence-curve confidence intervals are generally not too much smaller than those
based on the bootstrap. For estimates based on a sufficient amount of data, the potentially
optimistic behavior of influence-curve confidence intervals resulting from data-adaptive esti-
mation of the nuisance parameters thus appears to balance reasonably well with a slightly
conservative behavior due to the use of an influence curve that has not yet been projected
on the orthogonal complement of the nuisance tangent space.
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Figure 8: Comparison of inference for relative risk estimates for age < 75. For each subpop-
ulation and estimator, the plot shows bootstrap confidence intervals on the left and those
based on the influence curve on the right.
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Figure 9: Comparison of inference for relative risk estimates for age ≥ 75. For each subpop-
ulation and estimator, the plot shows bootstrap confidence intervals on the left and those
based on the influence curve on the right.
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7 Discussion

Our analyses suggest that high leisure-time physical activity confers a 40% reduction in two-
year mortality risk among elderly people under the age of 75 years. Subjects above this age
cut-off are estimated to experience a corresponding 60% reduction in risk unless they lack
a history of habitual exercise and have previously had cardiac events. In that case, high
leisure-time physical activity is in fact estimated to lead to a 2.33-fold increase in two-year
mortality risk. While the precision of these causal effect estimates is limited among the
younger subpopulation, the estimates approach statistical significance for older subjects who
have previously experienced cardiac events and are in fact statistically significant for older
subjects with previous cardiac events.

The DR-IPCW estimator that these results are based on relies on three major assump-
tions that need to be satisfied in order to obtain consistent estimates of causal effects from
observational data. First, the temporal ordering assumption requires that covariates mea-
sured at time t are only affected by treatments at earlier time points. Since the treatment
variable is measured over the course of one year, we had to define the covariates correspond-
ing to time t as the covariates that were in fact measured at time t− 1 in order to obtain a
data structure that satisfies this assumption. We note that this time ordering problem is a
wide-spread issue in longitudinal studies that is rarely addressed in analyzing the collected
data.

Second, the sequential randomization assumption requires that our data set contain all
relevant confounders of the relationship between leisure-time physical activity and mortality
as well as all relevant confounders of the relationship between leisure-time physical activity
and drop-out. Given the sizeable collection of variables available for capturing a subject’s
health status and past activity patterns, we are comfortable that this assumption is well ap-
proximated in the present case. Since the baseline covariates do not contain all the potential
confounders available at later time points, the approximation may be slightly worse for the
first time point. This is of interest since the risk increase reported for elderly subjects above
the age of 75 who lack a history of habitual exercise and have experienced previous cardiac
events is seen more strongly at the later three time points than at the first time point.

The estimator furthermore relies on an appropriate model for capturing the influence of
these confounders on the drop-out process as well as at least one appropriate model for their
impact on either the treatment variable or the risk of mortality. We are comfortable that the
nuisance models used here satisfy this requirement since they are selected in a data-adaptive
manner instead of being specified a priori. At the same time, we verified that the selected
models make sense from a subject-matter point of view. We also note that most commonly
used estimators would rely on correct specification of all three of these models as well as on
correct specification of models for the conditional distribution of the covariate process given
the past.

Third, the experimental treatment assignment assumption requires that there are es-
sentially no realizations of the covariate process for which treatment or drop-out are as-
signed in a deterministic manner. In the absence of this absence, causal effects are not
non-parametrically identifiable from observational data. While this assumption is rarely
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evaluated in practice, we have employed a simulation-based approach for assessing the im-
pact of any violation, theoretical or practical, of this assumption on the behavior of the
DR-IPCW estimator. The results indicate that any such bias is negligible for those parame-
ters that can be estimated with reasonable precision, with the small bias that is observed in
such cases generally moving estimates closer to the null value.

As shown by Gill and Robins (2001) and Yu and van der Laan (2002), these assumptions
place no restrictions on the data-generating distribution. Our analyses don’t rely on any
additional assumptions, allowing us thus to work in a non-parametric model. In particular,
we do not require that corresponding mortality risks are identical across all four time points
for our parameter of interest to be well-defined. At the same time there does not appear
sufficient evidence against this assumption, which simplifies the interpretation of this pa-
rameter considerably. In examining the behavior of mortality risk estimates across different
time points, we found that the risk increase reported for elderly subjects above the age of
75 who lack a history of habitual exercise and have experienced previous cardiac events is
driven primarily by the estimates for the third time point. We verified, however, that this is
unlikely to be due to problems with our adjustment for confounding and more likely related
to the instability of the crude mortality estimates.

While inference for the DR-ICPW estimator would commonly be based on a boot-
strap that ignores the variability introduced by selecting nuisance parameter models data-
adaptively, the boot-strap procedure employed here fully takes this aspect into account.
The reported confidence intervals are hence more honest and cannot be regarded as overly
optimistic.

If we believe that the required assumptions are sufficiently satisfied for the DR-IPCW
estimator to be consistent, we may turn to subject-matter considerations in an attempt to
explain the results we report here. The reductions in mortality risk that we estimate to
be experienced by the majority of subgroups as a consequence of high leisure-time physical
activity are consistent with a substantial body of epidemiological research pointing to an
association between physical activity among elderly people and reductions in cardiovascular
morbidity and mortality (CDC, 1989; van Dam et al., 2002; Lee et al., 2003; Esposito et al.,
2003; Rosano et al., 2005). The estimated 2.33-fold risk increase in elderly subjects above
the age of 75 who lack a history of habitual exercise and who have previously experienced a
cardiac event is surprising. The result could be due purely to chance, given some imprecision
around the point estimate. Inspection of table 3 does not provide any obvious explanation.
For this analysis, we did not evaluate the dates of the most recent cardiac events; therefore,
we might speculate that early exercise as part of rehabilitation actually precipitated fatal
outcomes. Nonetheless, on the whole, our results suggest that leisure-time physical activity
does benefit those over 75 years.

Our analyses suggest that the benefits of high-level LTPA may be more pronounced in
the older group of subjects. While this may be due to chance or to a real causal effect of
LTPA on mortality, this result could also be due to the fact that the older group represents a
robust survivor population derived from age cohorts with very different lifetime experiences.
Some support for this idea can be found in Table 5 which shows that the percent of high
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exercisers who rated their health as fair or poor was relatively stable over time and was
lowest overall at the last two time points.

We propose five different estimators of the parameter of interest that are based on dif-
ferent combinations of the usual G-computation, inverse-weighting, and double robust ap-
proaches for the two layers of missingness corresponding to the treatment mechanism and
right-censoring by drop-out. In particular, we propose a novel estimator that combines
IPCW weights for dealing with potentially informative drop-out with a G-computation ap-
proach for dealing with the missingness corresponding to the treatment mechanism. While
the five estimators agree fairly well in most cases, there are a few cases in which they produce
somewhat conflicting estimates. In this paper, we used robustness considerations to justify
focusing our attention on the DR-IPCW estimator. Another approach to dealing with this
situation would be to apply the methodology of targeted maximum-likelihood estimation,
recently introduced by van der Laan and Rubin (2006). By unifying estimating function
methodology with likelihood-based estimation, this methodology provides G-computation,
inverse-weighting, and double robust estimates that are algebraically identical, thus removing
the need to reconcile any conflicting results.
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B Measured confounders

Variable Definition
FEMALE Sex, coded as an indicator variable for female
V IG1 Number of vigorous leisure-time physical activities participated in between

the ages of 15 and 20
V IG2 Number of vigorous leisure-time physical activities participated in between

the ages of 20 and 39
V IG3 Number of vigorous leisure-time physical activities participated in from age

40 up to the baseline interview
MOD1 Number of moderate leisure-time physical activities participated in between

the ages of 15 and 20
MOD2 Number of moderate leisure-time physical activities participated in between

the ages of 20 and 39
MOD3 Number of moderate leisure-time physical activities participated in from age

40 up to the baseline interview
DEC An indicator of activity decline compared to 5 or 10 years ago
HIGH An indicator of participation in high school sports
HABITUAL An indicator of past habitual participation in vigorous leisure time physical

activities
ETSHM Years of exposure to environmental tobacco smoke at home prior to baseline
ETSWK Years of exposure to environmental tobacco smoke at work prior to baseline

Table 8: Definition of the measured time-independent covariates that are considered as
potential confounders.
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Variable Definition
CARD An indicator for the previous occurrence of any of the following cardiac

events: Angina, myocardial infarction, congestive heart failure, coronary
by-pass surgery, and coronary angioplasty

CHRON An indicator for the presence of any of the following chronic health
conditions: stroke, cancer, liver disease, kidney disease, Parkinson’s
disease, and diabetes mellitus

HLT Current self-rated health (excellent, good, fair, poor)
DEPSCORE A depression score based on a questionnaire about the emotional state

during the past week
ANTIDEP An indicator for current use of antidepressant medication
NRB A summary measure of physical functioning over the past month
BMI Current body mass index, summarized into an ordinal variable with three

categories
SMK Smoking status (current, ex, never)
LIV AR Living arrangement (alone, with spouse, with non-spouse)
AGE Age in years

Table 9: Definition of the measured time-dependent covariates that are considered as poten-
tial confounders.
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C Covariate imputation

Variable Imputation Method Frequency Percent
DEC Not missing 2,084 99.62

Typical value 8 0.38
ETSHM Not missing 2,064 98.66

Typical value 28 1.34
ETSHM Not missing 2,056 98.28

Typical value 36 1.72
MOD Not missing 2,091 99.95

Typical value 1 0.05
V IG Not missing 2,091 99.95

Typical value 1 0.05

Table 10: Among the time-independent covariates, FEMALE, HIGH and HABITUAL
have no missing values. The table above summarizes how the remaining time-independent
covariates were imputed.
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Variable Imputation Method Frequency Percent
HLT Not missing 7,248 99.66

Past measurement 7 0.10
Future measurement 16 0.22

Typical value 2 0.03
CHRONIC Not missing 7,196 98.94

Past measurement 45 0.62
Future measurement 24 0.33

Typical value 8 0.11
BMI Not missing 5,021 96.91

Past measurement 63 1.22
Future measurement 17 0.33

Typical value 80 1.54
NRB Not missing 5,065 97.76

Past measurement 106 2.05
Future measurement 6 0.12

Typical value 4 0.08
DEPSCORE Not missing 4,852 93.65

Past measurement 155 2.99
Future measurement 61 1.18

Typical value 113 2.18
LIV AR Not missing 5,166 99.71

Past measurement 15 0.29
Future measurement 0 0.00

Typical value 0 0.00

Table 11: Among the time-dependent covariates, CARD, AGE, SMK, and ANTIDEP
have no missing values. The table above summarizes how the remaining time-dependent
covariates were imputed.
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D Nuisance parameter models

The following models for the treatment mechanism were selected by polyclass() for the
four different time points. The variable ltpa.yr.t refers to the original LTPA measurement
in METs for time point t. Note that coefficient estimates give the log odds-ratio for low
LTPA compared to high LTPA rather than the other way around.

Table 12: Treatment model for t = 1 based on 2074 observations and 24 variables.

var1 knot1 var2 knot2 beta1
NA NA -0.705
mod3 NA -0.580
decline NA 0.368
vig3 NA -0.675
vig1 NA -0.119
vig3 mod3 0.101
age NA 0.021
female NA 0.344
decline mod3 0.204

Table 13: Treatment model for t = 2 based on 1748 observations and 44 variables.

var1 knot1 var2 knot2 beta1
NA 2.992
lpta.yr.1 -0.057
lpta.yr.1 57 0.045
nrb.1 -1.408

Table 14: Treatment model for t = 3 based on 1356 observations and 67 variables.

var1 knot1 var2 knot2 beta1
NA 2.916
lpta.yr.2 -0.074
lpta.yr.1 -0.019
nrb.1 -1.866
lpta.yr.2 19.5 0.044
bmi.1 0.041

47

http://biostats.bepress.com/ucbbiostat/paper214



Table 15: Treatment model for t = 4 based on 1098 observations and 90 variables.

var1 knot1 var2 knot2 beta1
NA -0.719
lpta.yr.3 -0.081
lpta.yr.3 33 0.071
lpta.yr.2 -0.013
age 0.049
lpta.yr.1 -0.010

The following models for the drop-out mechanism were selected by polyclass() for the four
different time points. Note that coefficient estimates give the log odds-ratio for remaining in
the study compared to dropping out of the study rather than the other way around.

Table 16: Drop-out model for t = 2 based on 1985 observations and 43 variables.

var1 knot1 var2 knot2 beta1
NA 3.961
age -0.028

Table 17: Drop-out model for t = 3 based on 1609 observations and 66 variables.

var1 knot1 var2 knot2 beta1
1.679

Table 18: Drop-out model for t = 4 based on 1280 observations and 89 variables.

var1 knot1 var2 knot2 beta1
NA 5.309
age -0.050
smoke2.2 -0.544
chronic.3 0.399
antidep.3 2.050

The following models for the the two-year risk of mortality were obtained for the four different
time points by the two-step procedure described in section 5.6. Note that coefficient estimates
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give the log odds-ratio for dying within the following two years compared to surviving the
following two years rather than the other way around.

Table 19: Failure model for t = 1 based on 2074 observations and 21 variables.

Term Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.436 0.935 -3.675 0.000
imp.etshome 1.733 0.485 3.572 0.000
decline 0.612 0.261 2.346 0.019
A -0.546 0.566 -0.964 0.335
binage 0.239 1.165 0.205 0.838
card 0.174 1.858 0.094 0.925
habitual 0.271 1.775 0.152 0.879
A:binage 0.625 0.722 0.866 0.387
A:card 0.394 1.110 0.355 0.723
binage:card 1.431 2.187 0.654 0.513
A:habitual -0.282 1.042 -0.271 0.787
binage:habitual 1.899 2.107 0.901 0.368
card:habitual 4.200 2.927 1.435 0.151
A:binage:card -0.808 1.336 -0.605 0.545
A:binage:habitual -1.089 1.281 -0.850 0.395
A:card:habitual -2.379 1.864 -1.276 0.202
binage:card:habitual -6.437 3.579 -1.799 0.072
A:binage:card:habitual 3.602 2.281 1.579 0.114
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Table 20: Failure model for t = 2 based on 1748 observations and 41 variables.

Term Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.474 1.120 -1.315 0.188
hlt4.1 1.253 0.409 3.063 0.002
nrb.1 -0.846 0.422 -2.007 0.045
etswork -0.484 0.189 -2.559 0.010
etswork 2 0.519 0.196 2.653 0.008
imp.etswork 1.564 0.581 2.691 0.007
A -1.396 0.808 -1.728 0.084
binage 0.475 1.204 0.395 0.693
card -1.032 1.945 -0.531 0.595
habitual -3.403 2.315 -1.470 0.142
A:binage 0.905 0.911 0.993 0.321
A:card 1.438 1.311 1.097 0.273
binage:card 0.350 2.224 0.157 0.875
A:habitual 2.292 1.368 1.675 0.094
binage:habitual 3.583 2.507 1.429 0.153
card:habitual 4.227 3.655 1.157 0.247
A:binage:card -0.682 1.512 -0.451 0.652
A:binage:habitual -2.258 1.518 -1.487 0.137
A:card:habitual -2.892 2.245 -1.288 0.198
binage:card:habitual -3.240 4.088 -0.793 0.428
A:binage:card:habitual 2.328 2.539 0.917 0.359
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Table 21: Failure model for t = 3 based on 1356 observations and 64 variables.

Term Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.547 1.028 -1.504 0.133
nrb.1 -1.235 0.609 -2.029 0.042
imp.bmi.2 1.705 0.478 3.569 0.000
chronic.1 0.634 0.245 2.584 0.010
nrb.2 0.100 0.766 0.131 0.896
nrb.20.77 -5.108 1.992 -2.564 0.010
female -0.773 0.259 -2.988 0.003
A -0.044 0.609 -0.073 0.942
binage 2.424 1.187 2.042 0.041
card 14.655 711.080 0.021 0.984
habitual -1.092 2.329 -0.469 0.639
A:binage -1.462 0.882 -1.658 0.097
A:card -14.443 711.078 -0.020 0.984
binage:card -16.752 711.081 -0.024 0.981
A:habitual 0.169 1.376 0.123 0.902
binage:habitual -0.278 2.580 -0.108 0.914
card:habitual -13.565 711.087 -0.019 0.985
A:binage:card 16.607 711.079 0.023 0.981
A:binage:habitual 1.158 1.619 0.715 0.475
A:card:habitual 14.690 711.081 0.021 0.984
binage:card:habitual 16.494 711.090 0.023 0.981
A:binage:card:habitual -17.250 711.082 -0.024 0.981
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Table 22: Failure model for t = 4 based on 1098 observations and 87 variables.

Term Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.950 0.978 -0.971 0.331
imp.nrb.3 1.370 0.420 3.258 0.001
nrb.3 -1.896 0.482 -3.936 0.000
A -0.553 0.642 -0.862 0.389
binage 0.413 1.139 0.363 0.717
card -1.000 2.478 -0.404 0.686
habitual -17.313 3093.055 -0.006 0.996
A:binage 0.283 0.798 0.354 0.723
A:card 0.685 1.586 0.432 0.666
binage:card 0.994 2.718 0.366 0.715
A:habitual 0.757 1738.354 0.000 1.000
binage:habitual 18.731 3093.056 0.006 0.995
card:habitual 34.559 4433.056 0.008 0.994
A:binage:card -0.420 1.779 -0.236 0.813
A:binage:habitual -2.272 1738.354 -0.001 0.999
A:card:habitual -17.590 3620.340 -0.005 0.996
binage:card:habitual -37.598 4433.057 -0.008 0.993
A:binage:card:habitual 19.196 3620.341 0.005 0.996
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