6 research outputs found
Wireless intelligent sensors based in nanostructures with energy self-sufficiency to study the consequences of high temperatures in combustion motors
In this research are proposed the consequences of high temperatures in Internal Combustion Motors (ICM) as correlation of its performance according to give information of the ICM fault detector, which also can be useful for preventive maintenance. It was possible to achieve the proposed target because of it was designed a smart sensor based in nanostructures prepared over Anodic Aluminum Oxide (AAO) samples, which proportionated short response time and high robustness in the measurement tasks of the smart sensor, as well as, the designed sensor has the possibility to work by energy self-sufficiency and sending the measurement data to external users by wireless. In fact, it is waited that this research could be a support for researchers of ICM enhancement, who could look for new techniques of environment conditions cares in compensation to keep the balance between the useful energy obtained from ICM and the environment conditions, where are developed economical activities such as public transport or mining in Peru
Optimal Analysis for the Enhancement in the Thermal Variables Measurement by Smart and Modular Solid State Sensors
The proposed research aims to analyze and optimize the measurement of thermal physical variables during the operation of a hydrogen combustion engine. The optimal measurement of the flow, temperature, pressure, and volume is given over the hydrogen, which is the main fuel of the studied combustion motor. Hence, the success of the measurement is based on the polynomial analysis of the combustion motor operation, which needs nonlinear algorithms to get the optimal correlation of the measured physical variables as well as a high robustness and short response time during the transduction of the measured physical variable, which is achieved as a consequence of the anodic aluminum oxide (AAO) amorphous nanostructures properties that are modular solid state integration of the designed smart sensor. The short response time and high robustness is a good advantage for the designed smart sensor since it gives more time to execute sophisticated algorithms in order to get the optimal physical variables measurement. In fact, the proposed smart sensor keeps the possibility to be modular and solid state for the interaction with the hydrogen fuel as well as recognizing the presence of other molecules mixed in the fluid, which can alarm the user who is able to recognize whether it is joined oxygen or carbon residues. Therefore, the proposed research work toward a good compromise to care for the environment condition based on a cleaner combustion motor operation
Cytokines and T-Lymphocute count in patients in the acute and chronic phases of Bartonella bacilliformis infection in an endemic area in peru: a pilot study
Human Bartonellosis has an acute phase characterized by fever and hemolytic anemia, and a chronic phase with bacillary angiomatosis-like lesions. This cross-sectional pilot study evaluated the immunology patterns using pre- and post-treatment samples in patients with Human Bartonellosis. Patients between five and 60 years of age, from endemic areas in Peru, in the acute or chronic phases were included. In patients in the acute phase of Bartonellosis a state of immune peripheral tolerance should be established for persistence of the infection. Our findings were that elevation of the anti-inflammatory cytokine IL-10 and numeric abnormalities of CD4+ and CD8+ T-Lymphocyte counts correlated significantly with an unfavorable immune state. During the chronic phase, the elevated levels of IFN-γ and IL-4 observed in our series correlated with previous findings of endothelial invasion of B. henselae in animal models
Risk of COVID-19 after natural infection or vaccinationResearch in context
Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
Recommended from our members
Risk of COVID-19 after natural infection or vaccinationResearch in context
Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health