12 research outputs found

    Polygenic Risk Score Analysis Revealed Shared Genetic Background in Attention Deficit Hyperactivity Disorder and Narcolepsy

    Full text link
    Attention deficit hyperactive disorder (ADHD) is a highly heritable neurodevelopmental disorder, and excessive daytime sleepiness is frequently observed in ADHD patients. Excessive daytime sleepiness is also a core symptom of narcolepsy and essential hypersomnia (EHS), which are also heritable conditions. Psychostimulants are effective for the symptomatic control of ADHD (primary recommended intervention) and the two sleep disorders (frequent off-label use). However, the common biological mechanism for these disorders has not been well understood. Using a previously collected genome-wide association study of narcolepsy and EHS, we calculated polygenic risk scores (PRS) for each individual. We investigated a possible genetic association between ADHD and narcolepsy traits in the Hamamatsu Birth Cohort for mothers and children (HBC study) (n=876). Gene-set enrichment analyses were used to identify common pathways underlying these disorders. Narcolepsy PRS were significantly associated with ADHD traits both in the hyperactivity domain (e.g.,P-value threshold \u3c 0.05,β[SE], 5.815 [1.774];P=0.002) and inattention domain(e.g.,P-value threshold \u3c 0.05,β[SE], 5.734 [1.761];P=0.004). However, EHS PRS was not significantly associated with either domain of ADHD traits. Gene-set enrichment analyses revealed that pathways related to dopaminergic signaling, immune systems, iron metabolism, and glial cell function involved in both ADHD and narcolepsy. Findings indicate that ADHD and narcolepsy are genetically related, and there are possible common underlying biological mechanisms for this relationship. Future studies replicating these findings would be warranted to elucidate the genetic vulnerability for daytime sleepiness in individuals with ADHD

    Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates.

    No full text
    We have developed a new method for selectively sorting droplets containing growing bacteria using a fluorescence resonance energy transfer (FRET)-based RNA probe. Bacteria and the FRET-based RNA probe are encapsulated into nanoliter-scale droplets, which are incubated to allow for cell growth. The FRET-based RNA probe is cleaved by RNase derived from the bacteria propagated in the droplets, resulting in an increase in fluorescence intensity. The fluorescent droplets containing growing bacteria are distinguishable from quenching droplets, which contain no cells. We named this method FNAP-sort based on the use of a fluorescent nucleic acid probe in droplets for bacterial sorting. Droplets containing the FRET-based RNA probe and four species of pure cultures, which grew in the droplets, were selectively enriched on the basis of fluorescence emission. Furthermore, fluorescent droplets were sorted from more than 500,000 droplets generated using environmental soil bacteria and the FRET-based RNA probe on days 1, 3, and 7 with repeated incubation and sorting. The bacterial compositions of sorted droplets differed on days 1, 3, and 7; moreover, on day 7, the bacterial composition of the fluorescent droplets was drastically different from that of the quenching droplets. We believe that FNAP-sort is useful for high-throughput cultivation and sorting of environmental samples containing bacteria with various growth rates, including slow-growing microbes that require long incubation times

    A Case with Severe Hyponatremia during Hysteroscopic Myomectomy

    No full text

    A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity

    Get PDF
    Transposable elements (TEs), or transposons, play an important role in adaptation. TE insertion can affect host gene function and provides a mechanism for rapid increases in genetic diversity, particularly because many TEs respond to environmental stress. In the current study, we show that the transposition of a heat-activated retrotransposon, ONSEN, generated a mutation in an abscisic acid (ABA) responsive gene, resulting in an ABA-insensitive phenotype in Arabidopsis, suggesting stress tolerance. Our results provide direct evidence that a transposon activated by environmental stress could alter the genome in a potentially positive manner. Furthermore, the ABA-insensitive phenotype was inherited when the transcription was disrupted by an ONSEN insertion, whereas ABA sensitivity was recovered when the effects of ONSEN were masked by IBM2. These results suggest that epigenetic mechanisms in host plants typically buffered the effect of a new insertion, but could selectively "turn on" TEs when stressed
    corecore