136 research outputs found

    Prediction of a time-to-event trait using genome wide SNP data

    Get PDF
    BACKGROUND: A popular objective of many high-throughput genome projects is to discover various genomic markers associated with traits and develop statistical models to predict traits of future patients based on marker values. RESULTS: In this paper, we present a prediction method for time-to-event traits using genome-wide single-nucleotide polymorphisms (SNPs). We also propose a MaxTest associating between a time-to-event trait and a SNP accounting for its possible genetic models. The proposed MaxTest can help screen out nonprognostic SNPs and identify genetic models of prognostic SNPs. The performance of the proposed method is evaluated through simulations. CONCLUSIONS: In conjunction with the MaxTest, the proposed method provides more parsimonious prediction models but includes more prognostic SNPs than some naive prediction methods. The proposed method is demonstrated with real GWAS data

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Soil-Surface-Image-Feature-Based Rapid Prediction of Soil Water Content and Bulk Density Using a Deep Neural Network

    No full text
    This study aimed to develop a deep neural network model for predicting the soil water content and bulk density of soil based on features extracted from in situ soil surface images. Soil surface images were acquired using a Canon EOS 100d camera. The camera was installed in the vertical direction above the soil surface layer. To maintain uniform illumination conditions, a dark room and LED lighting were utilized. Following the acquisition of soil surface images, soil samples were collected using a metal cylinder to obtain measurements of soil water content and bulk density. Various features were extracted from the images, including color, texture, and shape features, and used as inputs for both a multiple regression analysis and a deep neural network model. The results show that the deep neural network regression model can predict soil water content and bulk density with root mean squared error of 1.52% and 0.78 kN/m3. The deep neural network model outperformed the multiple regression analysis, achieving a high accuracy for predicting both soil water content and bulk density. These findings suggest that in situ soil surface images, combined with deep learning techniques, can provide a fast and reliable method for predicting important soil properties

    Evaluation of Calibration Method for Field Application of UAV-Based Soil Water Content Prediction Equation

    No full text
    The objective of this study is to monitor the water content of soil quickly and accurately using a UAV. Because UAVs have higher spatial and temporal resolution than satellites, they are currently becoming more useful in remote sensing areas. We developed a water content estimation equation using the color of the soil and suggested a calibration method for field application. Since the resolution of the images taken by the UAV is different according to the altitude, the water content estimation formula is developed by using the images taken at each altitude. In order to calibrate the color difference according to lighting conditions, the calibration method using field data were proposed. The results of the study showed an altitude-specific estimation equation using RGB values of the UAV image through linear regression. The appropriate number of field data needed for calibration for site application of the estimation equation was found between 4 and 10. On-site application results of the proposed calibration method showed RMSE accuracy of 1.8 to 2.9%. Thus, the water content estimation and calibration method proposed in this study can be used in effectively monitoring the water content of soil using UAVs

    Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

    No full text
    The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100–20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations

    Prediction of a time-to-event trait using genome wide SNP data

    No full text
    Abstract Background A popular objective of many high-throughput genome projects is to discover various genomic markers associated with traits and develop statistical models to predict traits of future patients based on marker values. Results In this paper, we present a prediction method for time-to-event traits using genome-wide single-nucleotide polymorphisms (SNPs). We also propose a MaxTest associating between a time-to-event trait and a SNP accounting for its possible genetic models. The proposed MaxTest can help screen out nonprognostic SNPs and identify genetic models of prognostic SNPs. The performance of the proposed method is evaluated through simulations. Conclusions In conjunction with the MaxTest, the proposed method provides more parsimonious prediction models but includes more prognostic SNPs than some naive prediction methods. The proposed method is demonstrated with real GWAS data
    corecore