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Abstract

demonstrated with real GWAS data.

Background: A popular objective of many high-throughput genome projects is to discover various genomic markers
associated with traits and develop statistical models to predict traits of future patients based on marker values.

Results: In this paper, we present a prediction method for time-to-event traits using genome-wide single-nucleotide
polymorphisms (SNPs). We also propose a MaxTest associating between a time-to-event trait and a SNP accounting
for its possible genetic models. The proposed MaxTest can help screen out nonprognostic SNPs and identify genetic
models of prognostic SNPs. The performance of the proposed method is evaluated through simulations.

Conclusions: In conjunction with the MaxTest, the proposed method provides more parsimonious prediction
models but includes more prognostic SNPs than some naive prediction methods. The proposed method is

Background

A genome-wide association study (GWAS) involves an
examination of the entire genome, typically single-
nucleotide polymorphisms (SNPs), of different individuals
to determine whether any variant is associated with a
particular clinical outcome. Many researchers have con-
sidered the design and analysis of GWASs with respect
to binary clinical outcomes such as case/control or
response/non-response ones [1-5].

In clinical cancer research, the primary endpoint of
interest is usually a time-to-event trait subject to cen-
soring. In CALGB 80803, for example, germline DNAs
are collected, together with time to progression and over-
all survival data, from 352 advanced pancreatic cancer
patients. One objective of an SNP correlative study is
to discover SNP markers that are correlated with such
time-to-event endpoints.

One of the first objectives of a statistical analysis in a
GWAS is the discovery of SNP markers that are associ-
ated with a particular trait. The major statistical issue in
marker discovery is multiple testing to avoid enlarged type
I error probability due to the large number of univariate
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tests [6,7]. Each prognostic SNP has two or three possible
outcomes depending on its genetic model, and the effi-
ciency of a statistical method in associating it with a trait
is maximized when the true genetic model is known. For
most SNPs, however, the true genetic model is unknown.
To identify the true genetic model of each SNP and opti-
mize the association analysis, many researchers have con-
sidered some candidate genetic models for a given trait
and derived a null distribution of the maximum of test
statistics specific to individual genetic models [8,9]. This
test is referred to as the MaxTest. These methods have
been developed for binary traits such as case/control or
response/non-response ones. We develop a MaxTest to
identify the genetic model of each SNP when the trait is a
survival endpoint, e.g., the time to tumor progression or
death.

Another major objective of a GWAS is to predict a
trait of interest by using SNPs. Prediction methods using
microarray data have been widely investigated [10-12], but
cannot be directly applied to SNP-based predictions. The
number of SNP markers in genome-wide SNP data far
exceeds that of gene markers (or probes) in microarray
data, e.g., 1M vs. 20K. In addition, although gene expres-
sion data in microarray studies are continuous, genome-
wide SNP data are discrete, taking only three different
values at most and showing different values depending on
the genetic model.

© 2013 Kim et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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This paper presents a method for predicting a survival
outcome that uses genome-wide SNP data but can be
easily modified for any type of trait, including binary or
continuous outcomes. The proposed method uses the gra-
dient lasso method [13], which has been developed for
microarray data. Some investigators fit a prediction model
while ignoring the genetic model of each SNP [14]. We
also propose a MaxTest associating between a time-to-
event trait and a SNP accounting for its possible genetic
model and identifies the genetic model of each candidate
prognostic SNP by using the proposed MaxTest before fit-
ting a prediction model. The simulation results show that
this procedure improves prediction efficiency and prog-
nostic power. For computational efficiency, nonsignificant
SNPs are excluded using the MaxTest before starting
the gradient lasso. For the facilitation of the proposed
MaxTest and prediction method, glcoxphSNP R pack-
ages (http://datamining.dongguk.ac.kr/Rlib/glcoxphSNP)
are provided.

Methods

Genetic Models of SNPs

Suppose that the genotype for an SNP is encoded as AA,
AB, or BB. Let g denote the number of copies of the B
allele. That is, g = 0, 1 or 2 if the genotype is AA, AB, or
BB, respectively. Let A;(#) denote the hazard function of
genotype g. Without loss of generality, assume that B is the
risk allele in the sense that having B increases the risk of
an event. More specifically, assume that 1o(¢) < A1(¢) <
Aa(¢) for all £ > 0. (Note that for some specific diseases,
this may not be an appropriate genetic model.) We now
consider the following three popular genetic models:

® Recessive model: Ag(£) = A1(¢) < Ao ().

e Dominant model: Ag(£) < A1(2) = Ay ().

e Multiplicative model: Ay (£)/A1(t) = A1(£)/1o(£), or
equivalently A1 (£) = yAo(¢) and Ay (¢) = ¥2ro(t) for
y > 0.

For a chosen score cg, we consider a proportional haz-
ard model (PHM), Ag(f) = Ao(t) exp(Bcg). Then Cox’s
partial maximum likelihood test has optimal power with
(co,c1,¢2) = (0,0,1) for a recessive model, (0,1,1) for a
dominant model, and (0, 1,2) for a multiplicative model
[15]. Note that the PHM is invariant to the linear transfor-
mation of the covariate (cy, ¢1, ¢2).

MaxTest

Suppose that we want to test whether an SNP is associated
with a given clinical outcome. The test statistic is depen-
dent on the true genetic model of the SNP. At the time of
testing, however, we usually have no knowledge of the true
genetic model. In this case, a naive approach is to conduct
all statistical tests by assuming different genetic models
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and choose the lowest p-value as the measurement of the
association. This approach can lead to an enlarged Type
I error because of multiple tests. To adjust for multiple
tests, investigators have proposed a method considering
the maximum of test statistics with respect to all candidate
genetic models under consideration, namely the MaxTest.

Many studies have considered the MaxTest for binary
clinical outcomes. Zheng et al. [8] propose a robust
ranking method when the underlying genetic model is
unknown, namely the MAX-rank test. Conneely and
Boehnke [16] propose a method for computing p-values
that adjusts for correlated tests and show that the method
can improve the accuracy of permutation tests with
greater computational efficiency. Li et al. [17] propose a
method for approximating the p-value for the MaxTest
with or without covariates adjusted for, namely the P-rank
test. Li et al. [9] compare the results of the MAX-rank
and P-rank tests. Hoggart et al. [18] formulate the prob-
lem as variable selection in a logistic regression analysis
including a covariate for each SNP and find the posterior
mode for shrinkage priors based on a stochastic search on
a penalized likelihood function.

We propose a MaxTest for survival endpoints. Here
we assign numeric scores to three genotypes based on
their genetic model: (cg, c1,¢2) = (0,0,1) for a recessive
model, (cg,c1,¢2) = (0,1,1) for a dominant model, and
(co,c1,¢2) = (0,1,2) for a multiplicative model. For a
given score ¢, assigned to the genotype g (= 0, 1,2) of an
SNP, we consider the Cox propotional hazard model,

Ag(2) = Ao (2) exp(Bcy).

For patient i (= 1,....,n), let T; and C; denote the sur-
vival and censoring times, respectively. We observe that
X; = min(T;, C;) and §; = I(T; < C;), where I(-) indi-
cates the indicator function. In addition, for £ > 0, let
Yi(t) = I(X; > ¢) and N;(t) = §,1(X; < t) denote
the at-risk and event processes, respectively. For a given
score, we set z; = c, if patient i has genotype g. Let
s = Yr, szl'(t), k = 0,1,2. Then, the partial score

test statistic by Cox [19],
n o0
W= 23 [ s @/ oldN
i=170

is asymptotically normal with mean 0 and variance that
can be consistently estimated by

2y [0 _so]
> ;fo {m(t) sgu)}dN‘m

under Hy : 1o(£) = A1(¢) = La(2) [see, e.g., [20]].

By combining the statistics with respect to the three
candidate genetic models, we can derive a MaxTest statis-
tic. Let Wjand 612 denote the test statistic and the variance
estimator with respect to genetic model / (= 1,2,3).
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Then we can define the proposed MaxTest as Q =
max(|T1],|T2|, | T3]), where T; = W;/6;. Under Hy, oy =
cov(W), Wy) is consistently estimated by

e [T @
= 121:/0 {Z” szo(t)}{z“

where z;; and sy (¢) denote z; and sk (), respectively, for
genetic model [; Y(t) = Y I, Yi(t), N(t) = Y 1 Ni(d).
Let & = (bw)1<1r<3, where pyp = 637 /6167. Then we can
obtain the critical value of Q by a numerical method or a
simulation method from the N(0, ) distribution. This is
a survival trait counterpart for the MaxTest with a binary
trait, as discussed in several studies [9,21].

We can construct an alternative test based on the
quadratic form W2 = ST$-1S, where S = (T, Ty, T3)T.
In addition to recessive, dominant, and multiplicative
genetic models, we can consider other models to develop
a test statistic to measure the relationship between an SNP
and a survival trait. For example, we may consider the
long-rank test based on the one-way ANOVA in [22] or
the test based on the Wilcoxon Rank-Sum test in [23],
which require no specific genetic model assumptions. In
particular, the ANOVA-type test is a reasonable option
if the monotone trend in genotypes g = 0, 1, and 2 is
doubtful.

Sl'l(t)} Yi(® AN(D)

s | Y@

Cox model with a lasso penalty

In an analysis using SNP data, we may face a problem
in which the number of SNPs exceeds the size of data,
that is, m > p, which frequently occurs even when a
smaller number of SNPs are selected through a prescreen-
ing step. This may lead to a serious collinearity problem
when directly applying the partial likelihood estimation to
the Cox model. To address this problem, Tibshirani[24]
estimates the parameters of the Cox model under the L;
constraint as follows:

m
B = I(B), subject t 1 <s
B = argmaxI(B), subject to ;Iﬂjl <s

where [(-) is the partial likelihood function [19].

The above optimization problem is suitable for reducing
the dimension of covariates but is computationally diffi-
cult because the L; objective function is not differentiable.
To address this computational problem, previous studies
have proposed many algorithms [13,24-26]. Tibshirani[24]
proposes an algorithm using quadratic programming
within an iterative procedure. Gui and Li[25] propose an
LAS-Cox procedure applying the Choleski decomposition
and the LARS procedure. However, these algorithms can
be computationally burdensome and sometimes fail to
converge to an optimum because they involve quadratic
programming and/or matrix inversions. Sohn et al. [13]
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propose glcoxph for the Cox model by using the gra-
dient lasso algorithm in [27]. This glcoxph employs a
coordinate-wise gradient decent with a deletion step and
requires only univariate optimization in each iteration. Its
convergence speed is almost independent of the number
of input variables, and it does not require a matrix inver-
sion, which makes it scalable to high-dimensional data
and allows it to converge to a global optimum faster. glm-
path [26] provides the entire penalization path for the Cox
model in a forward stagewise manner. Because it requires
matrix inversions only for active sets, it is faster and more
stable than other methods. Sohn et al. [13] provided a
comparative analysis using real and simulated data and
show that the gradient lasso algorithm outperforms glm-
path in analyzing high-dimensional survival data in terms
of the sparsity, predictability, and computational efficiency
of the final prediction model. Therefore, the following gra-
dient lasso algorithm can be a useful alternative for fitting
the Cox model to predict the survival time of patients
based on high-dimensional SNP data:

1. Initialize: 8 = 0and k = 0.
2. Do until convergence

(a) Addition:

(i) Compute the gradient VI(B).

(ii) Find the} maximizing |d/(B)/dp;| for
j=1,...,pand
y =—sX sign(al(ﬁ)/aﬁ;).

(iii) Let v be a p-dimensional vector such
that its j-th element 7 and other
elements are zeros.

(iv) Finda =
argmingefo1) /(1 —a)B +av).

(v) Update B = (1 — a)B + av.

(b) Deletion:

(i) Calculate
hy = —VIB,) + 0, VIB,) 0 /l0],
where o = {j : ; # 0}.
(i) Find$ = arg minseo,i7 /(B + Sh),
hs
0
U = mingeo {—B/hi : Brhi < 0}.
(i) Update B = B + Sh.

where h = and

(c) Setm=m+1.

3. Return .

Proposed algorithm for predicting a survival trait

We propose a new algorithm for fitting a Cox regression
model using SNP data. The proposed algorithm consists
of the following four steps: We (i) select significant SNPs
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by the MaxTest, as in Section “Example using real data’, (ii)
convert these SNPs into corresponding scores by genetic
models identified by the MaxTest, (iii) standardize these
scores, and (iv) apply the gradient lasso algorithm [13] to
selected SNPs. We summarize the algorithm in greater
detail as follows:

1. Read in the clinical data {(Xj, ;),i = 1, ..., n} and SNP
data {(sj1, ... Sim), i = 1, ..., n}, where s;; denotes the
number of B alleles for SNP j (= 1, ..., m).

2. For SNPj (=1, .., m), calculate the variance and
covarince matrix ﬁj, and generate the null
distribution of the MaxTest as follows.

(a) Forb=1,..,B (= 100,000, say), generate
b b b &
(tij), téj), t;l.)) from N (0, X)).

b b b b
(b) Let g” = max(|t{;’, 1t3|, £5]) for b = 1,..., B

3. ForSNPj (=1,..,m),

(a) Using original data, calculate the test statistics
(Thj, Toj, T3j), the MaxTest statistic
q; = max(|Tyjl, | Tojl, | T3;]), and two-sided
p-values p1j, pj, p3j from the marginal test for
respective genetic models.

(b) Approximate the p-value of the MaxTest by

B
— b
p=8">1@q" > q)
b=1

4. SNP screening: Select J (<< m) SNPs with p; < o
for specified a o (= 0.01, say).

5. For selected SNPsj (= 1,...,]), identify the genetic
model (1, 2, 3) by the lowest marginal p-value from
P1j» P2j, p3; or the largest test statistic from
T1,‘, TZ/'; Tg,'.

6. For patienti (= 1, ..., n), define covariates (z;1, ..., Ziy)
by the identified genetic model and the
corresponding score.

7. Standardize the covariates:

zy = L A S_ g,
j
wherezj = n~' 31, zyand st = n~' YOI, (25— )

8. Apply the gradient lasso to the Cox regression model
with response data {(Xj, §;),i = 1,...,n) and
standardized covariates {(z};, .., z;;),i = 1, ..., n}.

Results and discussion

Simulation study

We provide a simulation study. The data generation
scheme is as follows: We generate SNP data z, ..., z,,, from
N(0, 1) random variables with an AR(1) correlation struc-
ture with the autocorrelation coefficient p (> 0), x1, ..., X;.
Due to linkage disequilibrium, SNPs which lay in close
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vicinity within chromosomes tend to have a stronger asso-
ciation. In this sense, an AR(1) correlation structure is a
reasonable correlation structure for the continuous ran-
dom variables generating SNP data. Let x; = ¢; and
xj = pxj_1 + /1 — p2¢jforj = 2,..,m, where €1, ..., €5, ~
IIDN (0, 1) random numbers. The cutoff values for x; for
generating z; determine allele frequency. For each SNP, let
fi.fo.f3 (i +/f2 +f3 = 1) denote the frequency of AA, AB,
and BB genotypes, respectively, where B denotes the risk
allele. Note that marginally x; ~ N(0, 1). The true model
for the survival times is given as

D
A() = Ao(t) exp Z Bizij | »

j=1

where D denotes the number of prognostic SNPs.

For the experiment, we set m = 1000, n = 200, D = 6,
p =00r03 g = 08 (¢ = 1,..,D), and a uniform
censoring distribution for 15% or 30% of censoring. All
six prognostic SNPs have (f1,f2,/3) = (.25,.5,.25). SNP 1
and SNP 4 have a dominant model; SNP 2 and SNP 5, a
recessive model; and SNP 3 and SNP 6, a multiplicative
model. Each of the remaining 994 SNPs has (AA,AB,BB)
with (f1,/2,f3) = (1/3,1/3,1/3).

To evaluate the performance of the proposed method,
we generate 200 random samples and divide them into a
training set (100 samples) and a test set (100 samples).
We calculate the MaxTest p-value of each SNP by using
B=100,000 permutations from the training set and iden-
tify the genetic model for each SNP. We select SNPs with
p-values less than « = 0.01 and convert selected SNPs
into corresponding scores by their genetic models. We
apply the gradient lasso to the selected SNPs to fit the
prediction model. Let SNPs j (= 1,...,K) be included in
the fitted prediction model with corresponding regression
estimates ,31, s ,31<. Then we can define the risk score for
sample i as r; = ,31z,'1 4+ -4 ﬁAKziK. Using the median
risk score from the test set as a cutoff value, we divide the
patients in the test set into high- and low-risk groups. We
apply a two-sample log-rank test to compare the survival
distribution between these two risk groups. We repeat
this procedure 100 times and count the number of SNPs
and that of prognostic SNPs included in each fitted pre-
diction model by the gradient lasso. We summarize the
distribution of log-rank p-values from the test set, and for
comparison purposes, we consider the prediction meth-
ods by assuming that all m SNPs have the same genetic
model.

Table 1 reports the mean number of SNPs and that of
prognostic SNPs included in the fitted prediction model,
recovery rate, and the means (and standard deviations) of
the log-rank p-value from the test set for the proposed
method and the methods assuming a recessive, dominant,
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Table 1 Mean numbers of SNPs and prognostic SNPs included in fitted prediction models, recovery rate and
means/standard deviations of the log-rank p-value from test sets for the proposed method and methods assuming

recessive, dominant, or multiplicative models for all SNPs

Censoring P Genetic Mean number Mean number of Recovery Mean (SD) p-value
model of selected of selected rate of the log-rank
SNPs prognostic SNPs test
30% 0 Proposed 6.72 5.05 0.75 <0.0001 ( <0.0001)
Recessive 8.03 4.01 0.50 0.0052 (0.0018)
Dominant 6.66 3.85 0.58 <0.0001 ( <0.0001)
Multiplicative 7.72 4.95 0.64 0.0004 (0.0003)
03 Proposed 6.51 483 0.74 0.00071 (0.0001)
Recessive 7.73 3.83 0.50 0.0045 (0.0016)
Dominant 6.58 3.66 0.56 0.0011 (0.0007)
Multiplicative 7.52 472 0.63 0.0006 (0.0004 )
15% 0 Proposed 6.65 518 0.78 <0.0001 ( <0.0001)
Recessive 8.59 4.19 0.49 0.0028 (0.0011)
Dominant 6.69 3.88 0.58 <0.0001 ( <0.0001)
Multiplicative 7.96 498 0.63 0.0005 (0.0005)
03 Proposed 6.37 498 0.78 <0.0001 ( <0.0001)
Recessive 7.88 3.94 0.50 0.0048 (0.0028)
Dominant 6.38 3.74 0.59 0.0011 (0.0011
Multiplicative 7.55 4.89 0.65 0.0001 ( <0.0001)

or multiplicative model for all SNPs under various sim-
ulation settings. We define recovery rate as the ratio of
mean number of selected prognostic SNP to the mean
number of selected SNP as in Sohn et al. [13]. The pro-
posed method tends to result in prediction models with a
smaller number of SNPs but a larger number of prognos-
tic SNPs than the approaches assuming a specific genetic
model for all SNPs (i.e., recessive, dominant, and mul-
tiplicative methods in the table). The recovery rates of
the proposed method are higher than those of the meth-
ods based on a pre-specified model (recessive, dominant,
and multiplicative). Among the three methods assuming
a specific genetic model for all SNPs, the one assum-
ing a multiplicative model shows the best performance in

terms of the number of prognostic SNPs included in the
final prediction model. In addition, the proposed method
outperforms the recessive, dominant, and multiplicative
methods in terms of the log-rank p-value and results in
fitted prediction models with a smaller number of SNPs
but a larger number of prognostic SNPs with 15% com-
pared to 30% censoring. According to sample size (#) and
the effect size (8), the mean number of SNPs and that of
prognostic SNPs selected by the proposed method at p=0
and 30% censoring is shown in Table 2. The mean num-
ber of prognostic SNPs a little bit increases as B increase
and the mean number of prognostic SNPs increases
as n increases. The recovery rate increases as S or
n increases.

Table 2 Mean number of SNPs and prognostic SNPs included in the fitted prediction models, recovery rate and
means/standard deviations of the log-rank p-values from the test set for the proposed method at p = 0 and censoring =

30%
n B Mean number of Mean number of Recovery rate Mean (SD) p-value
selected SNP selected prognostic SNP of the log-rank test
200 0.8 6.72 5.05 0.75 <0.0001 (<0.0001)
1 6.13 518 0.85 <0.0001 ( <0.0001)
2 5.60 517 092 <0.0001 ( <0.0001)
300 0.8 6.18 553 0.89 <0.0001 ( <0.0001)
400 0.8 5.89 572 0.97 <0.0001 ( <0.0001)
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Example using real data

We apply the proposed method to the GWAS data in
Choi et al. [28], who provide a GWAS of 119 patients
with normal karyotype acute myeloid leukemia (AML-
NK) by using Affymetric Genome-Wide Human SNP
Arrays 6.0 (San Diego, CA, USA). We exclude those
SNPs with missing genotype data for any patient. We
also exclude those SNPs with only one genotype for the
119 patients. The final data set for the analysis includes
m = 251, 748 autosomal SNPs from »n = 119 patients.
The primary endpoint in this analysis is event-free sur-
vival (EFS), which is defined as the interval between the
registration and the end of induction chemotherapy for
patients showing no complete response (CR), a relapse
after achieving a CR to induction chemotherapy, or
death.

We employ the leave-one-out cross-validation (LOOCYV)
procedure to evaluate the predictive performance of the
proposed method for the data set. From a training set of
size n — 1 = 118, we calculate the MaxTest p-value of
each SNP based on B = 100,000 permutations, select J
candidate SNPs with p-values less than o = 0.01 by Max-
Test, and apply the gradient lasso to candidate SNPs to
obtain a prediction model. Using the median risk score
for the patients in the training set, we allocate those
patients who are left out for the validation to the high- or
low-risk group. We repeat this procedure # times and cal-
culate the log-rank p-value to compare the EFS between
the two risk groups. Figure 1(a) shows the Kaplan-Meier
curves for the high- and low-risk groups classified by
the LOOCYV procedure. The five-year EFS rate for the
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low-risk group (n=60, 53.8%) is much higher than that for
the high-risk group (n=59, 32.9%) with the estimated haz-
ard ratio of 0.446 (95 % CI, 0.256-0.778), and the log-rank
p-value is 0.0035.

A standard approach may be to fit a prediction model
assuming a multiplicative genetic models for all SNPs,
e.g. Tan et al. [29]. We analyzed this data set using the
same method as above except that all SNPs were assumed
to have a multiplicative model. Figure 1(b) displays the
LOOCYV results. Note that the fitted prediction mod-
els do not significantly partition the test set into high-
and low-risk groups by ignoring the possible genetic
models.

We also apply our prediction procedure to the whole
data set with n = 119. Using @ = 0.01, we select ] = 1122
candidate SNPs, among which 444 (39.6%) are shown
to have a recessive model, 463 (41.3%) a dominant
model, and 215 (19.2%) a multiplicative model. By apply-
ing the gradient lasso to the selected 1122 SNPs, we
obtain the final prediction model including k = 24 SNPs.
Table 3 lists the RS IDs, the chromosome numbers, the
base-pair position and the gene name of the 24 SNPs
included in the final prediction model. For each of the
24 SNPs, we report the genetic model (=1 for reces-
sive model, =2 for dominant model, and =3 for multi-
plicative model) identified by the MaxTest, the marginal
MaxTest p-value and number of times (frequency) that
each SNP is included in the prediction models during
the LOOCV. Note that the first four SNPs in Table
2 are included in all 119 prediction models during
LOOCV.

(a) Proposed method

T
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Figure 1 Kaplan-Meier curves for high- and low-risk groups classified by the LOOCV procedure.
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Table 3 List of 24 SNPs selected by the proposed method from the whole data set of 119 samples, their MaxTest p-values,
genetic models, the number of times selected by prediction models fitted during the LOOCV procedure

RS ID Chr Position Gene name Genetic P-value Frequency
model g

rs1030254 16 60696651 LOC644649, CDHS, LOC729159 3 0.00009 119
rs1030252 16 60696869 LOC644649, CDH8, LOC729159 2 0.00010 119
rs10798122 1 187584699 PLA2G4A, FAMS5C 1 0.00048 119
rs10026207 4 186039201 HELT, SLC25A4 3 0.00233 119
rs13333329 16 1695776 CRAMP1L 3 0.00015 17
1s2132183 3 84966867 LOC440970,CADM2 3 0.00149 117
rs1950400 14 27105035 MIR4307 NOVA1 2 0.00040 115
152155777 1 133290007 OPCML 3 0.00142 113
rs1677914 12 78274425 NAV3 2 0.00283 106
151476847 18 9834599 RAB31 1 0.00029 102
157614596 3 84986027 LOC440970,CADM2 2 0.00020 100
152648117 4 186787096 SORBS2 3 0.00856 90
rs1851317 15 35077786 GJD2,ACTCI 1 0.00999 88
1s3790217 20 19441650 SLC24A3 2 0.00728 85
154902990 14 72618432 RGS6 2 0.00004 81
1s9482583 6 125318379 RNF217 3 0.00847 79
rs3020444 14 64791013 ESR2 3 0.00288 77
rs10851869 15 74331083 PML 2 0.00036 65
rs11986200 8 22698209 PEBP4 1 0.00222 63
rs11260756 T 16759616 SPATA21 1 0.00827 63
1s4968415 17 60264240 MED13,TBC1D3P2 1 0.00075 62
1512416722 1 133300460 OPCML 1 0.00067 59

15626266 12 72888187 TRHDE 2 0.00070 52
rs16852300 2 167414424 SCN7AXIRP2 3 0.00513 33

The RGS6 gene (rs4902990) is associated with treatment
outcomes in AML-NK patients. RGS6, a regulator of G-
protein signaling 6, modulates the G-protein function in
the signaling pathway by activating the intrinsic GTPase
activity of alpha subunits [30,31]. An SNP on RGS6 has
been found to modulate the risk of bladder cancer [32]. In
addition, it is known that RGS6 induces apoptosis through
a mitochondrial-dependent pathway, which implies that
RGS6 may be involved in cancer progression [29]. Fur-
ther, membrane drug transporters, including SLC25A4
(rs10026207) and SLC24A3 (rs3790217), are known to be
associated with event-free survival. SLC25A4, solute car-
rier family 25 (mitochondrial carrier; adenine nucleotide
translocator; ANT1), member 4, is known to interact with
the Bcl-2-associated X protein, which is involved in the
apoptosis pathway [33,34]. The rs10798122 SNP on family
with sequence similarity 5, member C, FAM5C, is selected
by the proposed model. A loss of hypermethylated FAM5c
is known to be associated with the development of tongue
squamous cell carcinoma or gastric cancer [35,36].

Conclusions

We have proposed a prediction method for a survival
endpoint using SNPs. The paper also proposes a Max-
Test to screen out nonprognostic SNPs and identify
genetic model of prognostic SNPs. The simulation results
indicate substantial prognostic power for the proposed
prediction method. Noteworthy is that, in conjunction
with the MaxTest, the proposed method provides more
parsimonious prediction models with more prognos-
tic SNPs than those prediction methods ignoring the
true genetic model of prognostic SNPs. We apply real
GWAS data to patients with acute myeloid leukemia
and find that the proposed method provides a predic-
tion model that can efficiently classify the patients into
high- and low-risk groups by using a small number
of SNPs that are known to be biologically informative.
Although the proposed method is limited to the pre-
diction of time-to-event traits, it can be easily extended
to a wide range of traits, including dichotomous or
continuous ones.
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