609 research outputs found

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Get PDF
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    Recent development of inorganic nanoparticles for biomedical imaging

    Get PDF
    Inorganic nanoparticle-based biomedical imaging probes have been studied extensively as a potential alternative to conventional molecular imaging probes. Not only can they provide better imaging performance but they can also offer greater versatility of multimodal, stimuli-responsive, and targeted imaging. However, inorganic nanoparticle-based probes are still far from practical use in clinics due to safety concerns and less-optimized efficiency. In this context, it would be valuable to look over the underlying issues. This outlook highlights the recent advances in the development of inorganic nanoparticle-based probes for MRI, CT, and anti-Stokes shift-based optical imaging. Various issues and possibilities regarding the construction of imaging probes are discussed, and future research directions are suggested.

    Experimental studies of strong dipolar interparticle interaction in monodisperse Fe3O4 nanoparticles

    Get PDF
    Interparticle interaction of monodisperse Fe3 O4 nanoparticles has been experimentally investigated by dispersing the nanoparticles in solvents. With increasing the interparticle distances to larger than 100 nm in a controlled manner, the authors found that the blocking temperature (TB) of the nanoparticles drops continuously and eventually gets saturated with a total drop in TB of 7-17 K observed for 3, 5, and 7 nm samples, compared with their respective nanopowder samples. By carefully studying the dependence of TB on the interparticle distance, the authors could demonstrate that the experimental dependence of TB follows the theoretical curve of the dipole-dipole interaction. © 2007 American Institute of Physics.open313

    Electric double-layer capacitor performance of a new mesoporous carbon

    Get PDF
    A new mesoporous carbon (NMC) was prepared, and its performance in an electric double-layer capacitor (EDLC) was compared to that of a conventional carbon (a molecular-sieving carbon, MSC25). The effect of pore size and pore connection pattern on EDLC performance was demonstrated. To prepare NMC, phenol resin was synthesized inside the pores of an inorganic template, Mobile Composite Material 48 (MCM48), and the resulting resin-template composite was carbonized at 700 degrees C under Ar atmosphere. A coke-like carbonaceous material was obtained after removing the inorganic template by HF treatment. The surface area of NMC was 1257 m(2) g(-1) which is smaller than that of MSC25 (1970 m(2) g(-1)). NMC had three-dimensionally interconnected mesopores (2.3 nm average diam), but randomly connected cage-like micropores (<2.0 nm) were dominant in MSC25. The difference in the pore size and pore connection pattern between the two carbons gave rise to a remarkable difference in their EDLC performances. NMC exhibited a smaller specific capacitance (about 120 F g(-1)) than MSC25 as a result of its smaller surface area, but it showed a higher critical scan rate than the MSC25 electrode due to a smaller resistance-capacitance (RC) time constant. The specific charging capacity of the NMC electrode was about 20 mAh g(-1) and was largely invariant vs. the charge-discharge rate. This was contrasted by MSC25 which showed a steadily decreasing capacity with an increase in rate. As a result, the NMC electrode outperformed the MSC25 based on rate capability. The smaller RC time constant and better rate capability of the NMC electrode apparently arises from the lower electrolyte resistance in pores, which in turn stems from the faster ionic motion in larger pores. (C) 2000 The Electrochemical Society. S0013-4651(00)01-080-6. All rights reserved.This work was supported by the Brain Korea 21 Project.

    Wearable Fall Detector using Integrated Sensors and Energy Devices

    Get PDF
    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

    Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters

    Get PDF
    The fundamental bandgap E-g of a semiconductor-often determined by means of optical spectroscopy-represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of the bonds occurs upon optical excitation, which results in a strong exciton-driven shift of the phonon spectrum. As a consequence, a drastic increase of dE(g)/dT (up to a factor of 2) with respect to bulk material or nanocrystals of typical size is found. We are able to describe our experimental data with excellent quantitative agreement from first principles deriving the bandgap shift with temperature as the vibrational entropy contribution to the free energy difference between the ground and optically excited states. Our work demonstrates how in small nanoparticles, photons as the probe medium affect the bandgap-a fundamental semiconductor property. The bandgap of nanostructures usually follows the bulk value upon temperature change. Here, the authors find that in small nanocrystals a weakening of the bonds due to optical excitation causes a pronounced phonon shift, leading to a drastic enhancement of the bandgap's temperature dependence.

    Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors

    Get PDF
    A mesoporous carbon with regular three-dimensionally interconnected 2 nm pore arrays using AlMCM-48 as a template has been synthesised; the mesoporous carbon exhibited excellent performance as an electrochemical double layer capacitor.We are grateful to the Korea Science and Engineering Foundation (Basic Research Program #98-05-02-03-01-3) for financial support.

    Slow oxidation of magnetite nanoparticles elucidates the limits of the Verwey transition

    Get PDF
    Magnetite (Fe3O4) is of fundamental importance as the original magnetic material and also for the Verwey transition near T_V = 125 K, below which a complex lattice distortion and electron orders occur. The Verwey transition is suppressed by strain or chemical doping effects giving rise to well-documented first and second-order regimes, but the origin of the order change is unclear. Here, we show that slow oxidation of monodisperse Fe3O4 nanoparticles leads to an intriguing variation of the Verwey transition that elucidates the doping effects. Exposure to various fixed oxygen pressures at ambient temperature leads to an initial drop to TV minima as low as 70 K after 45-75 days, followed by recovery to a constant value of 95 K after 160 days that persists in all experiments for aging times up to 1070 days. A physical model based on both doping and doping-gradient effects accounts quantitatively for this evolution and demonstrates that the persistent 95 K value corresponds to the lower limit for homogenously doped magnetite and hence for the first order regime. In comparison, further suppression down to 70 K results from inhomogeneous strains that characterize the second-order region. This work demonstrates that slow reactions of nanoparticles can give exquisite control and separation of homogenous and inhomogeneous doping or strain effects on an nm scale and offers opportunities for similar insights into complex electronic and magnetic phase transitions in other materials.Comment: 24 pages, 13 figures, 2 tables, the manuscript is accepted for publishing at Nature Communication

    Large scale and integrated platform for digital mass culture of anchorage dependent cells

    Get PDF
    Industrial applications of anchorage-dependent cells require large-scale cell culture with multifunctional monitoring of culture conditions and control of cell behaviour. Here, we introduce a large-scale, integrated, and smart cell-culture platform (LISCCP) that facilitates digital mass culture of anchorage-dependent cells. LISCCP is devised through large-scale integration of ultrathin sensors and stimulator arrays in multiple layers. LISCCP provides real-time, 3D, and multimodal monitoring and localized control of the cultured cells, which thereby allows minimizing operation labour and maximizing cell culture performance. Wireless integration of multiple LISCCPs across multiple incubators further amplifies the culture scale and enables digital monitoring and local control of numerous culture layers, making the large-scale culture more efficient. Thus, LISCCP can transform conventional labour-intensive and high-cost cell cultures into efficient digital mass cell cultures. This platform could be useful for industrial applications of cell cultures such as in vitro toxicity testing of drugs and cosmetics and clinical scale production of cells for cell therapy.
    corecore